ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


Электролиты для химических источников тока

Твёрдые калийпроводящие электролиты в системах K3–2xMxPO4 (M = Mg, Zn)

Синтезированы и исследованы новые калийпроводящие твёрдые электролиты в системах K3–2хMхPO4 (M = Mg, Zn). Ввведение катионов Mg2+ и Zn2+ приводит к резкому возрастанию электропроводности K3PO4 за счет образования вакансий в калиевой подрешетке и стабилизации высокотемпературной кубической модификации ортофосфата. Максимальная проводимость наблюдается в области с x ? 0.15–0.25 и составляет (6–8)·10–2 См·см-1 при 400°C, более 10–1 См·см-1 при 700°C. Обсуждаются факторы, влияющие на транспортные свойства исследованных электролитов.

Влияние добавки ионных жидкостей EMIBF4 И BMIBF4 на свойства сетчатых полимерных электролитов для литиевых источников тока

Изучено влияние ионных жидкостей 1-этил-3-метилимидазолия тетрафторборат (ЕМIBF4) и 1-бутил-3-метилимидазолия тетрафторборат (BМIBF4) на свойства полимерного электролита на основе диакрилата полиэтиленгликоля (ДАк-ПЭГ) и соли LiBF4. Исследования проводили методом масс-спрей спектроскопии, дифференциальной сканирующей калориметрии и методом спектроскопии электрохимического импеданса в интервале температур от –40 до 120 °С.

Исследование механизмов деградации мембранно-электродных блоков твёрдополимерных электролизёров воды

С точки зрения производительности, безопасности, надёжности и долговечности мембранно-электродный блок (МЭБ) является наиболее критическим компонентом электролизной ячейки с твёрдым полимерным электролитом (ТПЭ). Большинство потерь производительности и большинство отказов в работе, происходящих в процессе работы электролизёра воды с ТПЭ, как правило, связано с МЭБ. Целью данной статьи является представление конкретных данных о механизмах деградации МЭБ и электролизёра в целом.

Электролиты для высокотемпературных химических источников тока: формирование и исследование систем, составы и свойства

DOI: 10.18500/1608-4039-2015-15-4-180-195

Предложена методика формирования систем для поиска расплавленных электролитов химических источников тока, пример исследования некоторых систем и свойств составов электролитов. Приведены испытания некоторых составов в реальных химических источниках тока.

Современное состояние и перспективы развития жидких электролитных систем для литий-ионных аккумуляторов

УДК 544.6.018.4

DOI:  https://doi.org/10.18500/1608-4039-2016-16-4-155-195

В обзоре рассмотрены работы по исследованию жидких органических электролитных систем для литий-ионных аккумуляторов за последние 10 лет. Обзор состоит из глав, посвященных современному состоянию и перспективам развития работ по исследованию солей лития, апротонных растворителей, а также добавок к жидким электролитам, выполняющим различные функции по улучшению работы литиевого источника тока.

Электролиты для перезаряжаемых химических источников тока с магниевым анодом

В статье даётся перечень известных на данный момент времени электролитов для создания перезаряжаемых химических источников тока с магниевым анодом. Среди них приводятся электролиты, содержащие и не содержащие хлориды, а также боро- и алюмоцентричные электролиты в качестве жидких электролитов. Даются примеры загущенных, полимерных и твёрдых электролитов. Приводятся сводные таблицы по свойствам растворителей и жидких растворов электролитов.

Рецензия на книгу: Macro, Micro, and Nano-Biosensors: Potential Applications and Possible Limitation / eds. Mahendra Rai, Anatoly Reshetilov, Yulia Plekhanova, Avinash P. Ingle

Основная идея книги заключается в том, что в зависимости от решаемой проблемы используются разные подходы; в некоторых случаях нужно работать с макробиосенсорами, с микро- и наносенсорами – в других. Рассматриваются биосенсоры электрохимические, оптические, на основе атомно-силовой микроскопии; биотопливные элементы, развивающие идею электрохимических биосенсоров, предназначенные для двойной цели: очистки окружающей среды и выработки электрической энергии.

Электродный материал на основе многослойного оксида графена для химических источников тока

Приведены результаты исследований электрохимического синтеза многослойного оксида графена, показана возможность его применения в качестве электродного материала суперконденсатора. В спиртовой суспензии толщина частиц многослойного оксида графена составляет менее 0.1 мкм с площадью более 100 мкм2. Электрод на основе оксида графена имеет высокую удельную емкость 107 Ф?г ? 1 и высокую сохранность заряда 97% после 5000 циклов. Показано, что электрод из оксида графена обладает максимальной удельной энергией 8.7 Вт?ч?кг ?

Страницы