ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


Для цитирования:

Григорьев А. С., Джусь К. А., Бессарабов Д. Г., Маркелов В. В., Фатеев В. Н. Исследование механизмов деградации мембранно-электродных блоков твёрдополимерных электролизёров воды // Электрохимическая энергетика. 2014. Т. 14, вып. 4. С. 187-196. DOI: 10.18500/1608-4039-2014-14-4-187-196, EDN: TWVWBT

Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0).
Полный текст в формате PDF(Ru):
(загрузок: 173)
Язык публикации: 
русский
Тип статьи: 
Научная статья
EDN: 
TWVWBT

Исследование механизмов деградации мембранно-электродных блоков твёрдополимерных электролизёров воды

Авторы: 
Григорьев Александр Сергеевич, Национальный исследовательский центр «Курчатовский институт»
Джусь Кирилл Андреевич, Национальный исследовательский центр «Курчатовский институт»
Бессарабов Дмитрий Георгиевич, Центр водородной инфраструктуры, Северо-западный университет
Маркелов Владимир Владимирович, Национальный исследовательский центр «Курчатовский институт»
Фатеев Владимир Николаевич, Национальный исследовательский центр «Курчатовский институт»
Аннотация: 

С точки зрения производительности, безопасности, надёжности и долговечности мембранно-электродный блок (МЭБ) является наиболее критическим компонентом электролизной ячейки с твёрдым полимерным электролитом (ТПЭ). Большинство потерь производительности и большинство отказов в работе, происходящих в процессе работы электролизёра воды с ТПЭ, как правило, связано с МЭБ. Целью данной статьи является представление конкретных данных о механизмах деградации МЭБ и электролизёра в целом.

Список источников: 

1. Grigoriev S. A., Porembsky V. I., Fateev V. N. Pure hydrogen production by PEM electrolysis for hydrogen energy // Intern. J. Hydrogen Energy. 2006. Vol. 31, iss. 2. P. 171–175.
2. Borresen B., Hagen G., Tunold R. Hydrogen evolution on Rux Ti1-x O2  in 0.5 M H2 SO4   // Electrochim. Acta. 2002. Vol. 47, iss. 11. P. 1819–1827.
3. Grigoriev S. A., Porembskiy V. I., Korobtsev S. V., Fateev V. N., Aupretre F., Millet P. High-pressure PEM water electrolysis and corresponding safety issues // Intern. J. Hydrogen Energy. 2011. Vol. 3, № 6. P. 2721–2728.
4. Grigoriev S. A., Millet P., Korobtsev S. V., Porembskiy V. I., Pepic M., Etievant C., Puyenchet C., Fateev V. N. Hydrogen safety aspects related to high-pressure polymer electrolyte membrane water electrolysis // Intern. J. Hydrogen Energy. 2009. Vol. 34, iss. 14. P. 5986–5991.
5. Siracusano S., Baglio V., Briguglio N., Brunaccini G., Di Blasi A., Stassi A. An electrochemical study of a PEM stack for water electrolysis // Intern. J. Hydrogen Energy. 2012. Vol. 37, iss. 2. P. 1939–1946.
6. Marco B., Daniel G. Activation of Ruthenium Oxide, Iridium Oxide, and Mixed Rux Ir1-x  Oxide Electrodes during Cathodic Polarization and Hydrogen Evolution // J. Electrochem. Society. 1997. Vol. 144, iss. 2. P. 573–581.
7. Rasten E., Hagen G., Tunold R. Electrocatalysis in water electrolysis with solid polymer electrolyte // Electrochim. Acta. 2003. Vol. 48. P. 3945–3452.
8. Marshall A., Borresen B., Hagen G., Tsypkin M., Tunold R. Preparation and characterization of nanocrystalline IrxSn1-x O2  electrocatalytic powders // Materials Chemistry and Physics. 2005. Vol. 94. P. 226–232.
9. Ma H. C., Liu C. P., Liao J. H., Su Y., Xue X. Z., Wei X. Study of ruthenium oxide catalyst for electrocatalytic performance in oxygen evolution // J. Molecular Catalysis A: Chemical. 2006. Vol. 247. P. 7–13.
10. Tavares A. C., Trasatti S. Ni+RuO2  co-deposited electrodes for hydrogen evolution // Electrochim. Acta. 2000. Vol. 45. P. 4195–4202.
11. Wan C. H., Lin M. T., Zhuang Q. H., Lin C. H. Preparation and performance of novel MEA with multi catalyst layer structure for PEFC by magnetron sputter deposition technique // Surface and Coatings Technology. 2006. Vol. 201. P. 214–222.
12. Reshetenko T. V., Kim H. T., Krewer U., Kweon H. J. The effect of the anode loading and method of MEA fabrication on DMFC performance // Fuel Cells. 2007. Vol. 7. P. 238–245.
13. Wee J. H., Lee K. Y., Kim S. H. Fabrication methods for low-Pt loading electrocatalysts in proton exchange membrane fuel cell systems // J. Power Sources. 2007. Vol. 165. P. 667–677.
14. Kim H. S., Subramanian N. P., Popov B. N. Preparation of PEM fuel cell electrodes using pulse electrodeposition // J. Power Sources. 2004. Vol. 138. P. 14–24.
15. Barbir F. PEM fuel cells, theory and practice. New York: Elsevier Academic Press, 2005. 456 p.
16. Grubb Jr. W. T. Batteries with solid ion-exchange electrolytes // J. Electrochem. Soc. 1959. Vol. 106. P. 275–279.
17. Millet P., Andolfatto F., Durand R. Design and performance of a solid polymer electrolyte water electrolyzer // Intern. J. Hydrogen Energy. 1996. Vol. 21. P. 87–93.
18. Zhang S., Yuan X., Wang H., Merida W., Zhu H., Shen J., Wu S., Zhang J. A review of accelerated stress tests of MEA durability in PEM fuel cells // Intern. J. Hydrogen Energy. 2009. Vol. 34. P. 388–404.
19. Yuan X.-Z., Zhang S., Ban S., Huang C., Wang H., Singara V., Fowler M., Schulze M., Haug A., Friedrich K. A., Hiesgen R. Degradation of a PEM fuel cell stack with Nafion^\mbox\textregistered membranes of different thicknesses. Part II: Ex situ diagnosis // J. Power Sources. 2012. Vol. 205. P. 324–334.
20. Millet P., Pineri M., Rurand R.  New solid polymer electrolyte composites for water electrolysis // J. Applied Electrochem.. 1989. Vol. 19. P. 162–166.
21. Kotz E. R., Stucki S. Ruthenium dioxide as a hydrogen-evolving cathode // J. Appl. Electrochem. 1987. Vol. 17. P. 1190–1197.
22. Abdel-Aal H. K., Husseina I. A. Parametric study for saline water pelectrolysis: part III –- precipitate formation and recovery of magnesium salts // Intern. J. Hydrogen Energy. 1993. Vol. 18. P. 553–556.
23. Millet P., Ranjbari A., de Guglielmo F., Grigoriev S. A., Aupretre F. Cell failure mechanisms in PEM water electrolyzers // Intern. J. Hydrogen Energy. 2012. Vol. 37. P. 17478–17487.
24. Grigoriev S. A., Fedotov A. A., Martemianov S. A., Fateev V. N. Synthesis of nanostructural electrocatalytic materials on various carbon substrates by ion plasma sputtering of platinum metals // Rus. J. Electrochem. 2014. Vol. 50, iss. 7. P. 638–646.
25. Grigoriev S. A., Mamat M. S., Dzhus K. A., Walker G. S., Millet P. Platinum and palladium nano-particles supported by graphitic nano-fibers as catalysts for PEM water electrolysis // Intern. J. Hydrogen Energy. 2011. Vol. 36. P. 4143–4147.
26. Lee S., Bessarabov D., Vohra R. Degradation of a cathode catalyst layer in PEM MEAs subjected to automotivespecific test conditions // Intern. J.  Green Energy. 2009. Vol. 6. P. 594–606.
27. Kundu S., Cimenti M., Lee S., Bessarabov D.  Fingerprint of the automotive fuel cell cathode catalyst degradation: Pt band in the proton-exchange membranes // Membrane Technology. 2009. Vol. 10. P. 7–10.
28. Berejnov V., Martin Z., West M., Kundu S., Bessarabov D., Stumper J., Susac D., Hitchcock A. P. Probing platinum degradation in polymer electrolyte membrane fuel cells by synchrotron Xray microscopy // Physical Chemistry Chemical Physics. 2012. Vol. 14. P. 4835–4843.
29. Stucki S., Scherer G. G., Schlagowski S., Fischer E. PEM water electrolysers: evidence for membrane failure in 100 kW demonstration plants // J. Appl. Electrochem.. 1998. Vol. 28. P. 1041–1049.
30. Liu H., Coms F. D., Zhang J., Gasteiger H. A., LaConti A. B. Polymer Electrolyte Fuel Cell Durability. New York: Springer Science+Business Media, 2009. P. 84.

Поступила в редакцию: 
06.11.2014
Принята к публикации: 
06.12.2014
Опубликована: 
25.12.2014