Cd|KOH|NiOOH

Zn|NH4CI|MnO2

Li|LiClO4|MnO2

Pb|H2SO4|PbO2

H2|KOH|O2

Современное состояние и перспективы развития жидких электролитных систем для литий-ионных аккумуляторов

УДК 544.6.018.4

DOI:  https://doi.org/10.18500/1608-4039-2016-16-4-155-195

В обзоре рассмотрены работы по исследованию жидких органических электролитных систем для литий-ионных аккумуляторов за последние 10 лет. Обзор состоит из глав, посвященных современному состоянию и перспективам развития работ по исследованию солей лития, апротонных растворителей, а также добавок к жидким электролитам, выполняющим различные функции по улучшению работы литиевого источника тока.

Литература
  1. Xu K. Electrolytes and Interphases in Li-Ion Batteries and Beyond // Chem. Rev. 2014. Vol. 114. P. 11503– 11618. DOI: 10.1021/cr500003w.
  2. Aravindan V., Gnanaraj J., Madhavi S., Liu H.-K. Lithium-Ion Conducting Electrolyte Salts for Lithium Batteries // Chem. Eur. J. 2011. Vol. 17, № 51. P. 14326–14346. DOI: 10.1002/chem.201101486.
  3. Younesi R., Veith G. M., Johansson P., Edstrombe K., Veggea T. Lithium salts for advanced lithium batteries : Li–metal, Li–O2, and Li–S // Energy Environ. Sci. 2015. Vol. 8. P. 1905–1922. DOI: 10.1039/C5EE01215E.
  4. Zhang S. S. The effect of the charging protocol on the cycle life of a Li-ion battery // J. Power Sources. 2006. Vol. 162, № 2. P. 1379–1391. DOI: 10.1016/j.jpowsour.2006.06.040.
  5. Lex-Balducci A., Henderson W. A., Passerini S. Electrolytes for lithium ion battery materials. Lithium ion batteries : advanced materials and technologies / eds. Y. Yuan, H. Liu, J. Zhang. Boca Raton, FL, CRC Press, 2011.
  6. Wilken S., Johansson P., Jacobsson P. Lithium Batteries : Advanced Technologies and Applications (First Edition) / eds. B. Scrosati, K. Abraham M., Schalkwijk W., J. Hassoun, Hoboken, N J, John Wiley&Sons, Inc., 2013. DOI: 10.1002/9781118615515.index.
  7. Ue M. Role-assigned electrolytes : additives. Lithium-ion batteries : science and technologies / eds. M. Yoshio, R. Brodd J., A. Kozawa, N.Y. : Springer-Verlag, 2009. 443 p. DOI: 10.1007/978-0-387-34445-4.
  8. Yoshio M., Nakamura H., Dimov N. Development of lithium-ion batteries : from the viewpoint of impor- tance of the electrolytes. Lithium Ion Rechargeable Batteries : Materials, Technology, and New Applications / eds. K. Ozawa, Hoboken, N J, Wiley-VCH, 2009. 336 p.
  9. Huggins R. A. Advanced Batteries. Boston, M A : Springer US, 2009. 474 p. DOI: 10.1007/978-0-387-76424-5.
  10. Henderson W. A. Nonaqueous Electrolytes : Advances in Lithium Salts. Electrolytes for Lithium and Lithium-Ion Batteries / eds. T. R. Jow, K. Xu, O. Borodin, M. Ue. N.Y. : Springer, 2014. Vol. 58. 476 p.
  11. Gores H. J., Barthel J., Zugmann S., Moosbauer D., Amereller M., Hartl R., Maurer A. Liquid Nonaqueous Electrolytes. Handbook of Battery Materials (Second Edition) / eds. C. Daniel, J. O. Besenhard. Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim, Germany, 2011. 989 p. DOI: 10.1002/9783527637188.ch17.
  12. Baskakova Yu. V., Yarmolenko O. V., Efimov O. N. Polymer gel electrolytes for lithium batteries // Russ. Chem. Rev. 2012. Vol. 81, № 4. P. 367–380. DOI: 10.1070/RC2012v081n04ABEH004210.
  13. Harris W. S. Electrochemical studies in cyclic esters. PhD Dissertation. University of California. Berkeley, UCRL-8381, 1958. 77 p.
  14. Plichta E., Slane S., Uchiyama M., Salomon M., Chua D., Ebner W. B., Lin H. W. Two-dimensional distribution of sodium polysulfide composition in sulfur electrodes of sodium-sulfur cells // J. Electrochem. Soc. 1989. Vol. 136, № 7. P. 1865–1869. DOI: 10.1149/1.2097063.
  15. Handbook of batteries (Third ed.) / eds. D. Linden, T. B. Reddy. McGraw-Hill, Inc., N.Y., 2002. 1453 p.
  16. Игнатова А. А., Тулибаева Г. З., Ярмоленко О. В., Фатеев С. А. Электролитные системы для первичных литий-фторуглеродных источников тока и их работоспособность в широком интервале температур // Электрохимия. 2017. Вып. 53, № 1.
  17. Ignatova A. A., Yarmolenko O. V., Tulibaeva G. Z., Shestakov A. F., Fateev S. A. Influence of 15-crown- 5 additive to a liquid electrolyte on the performance of Li/CFx systems at temperatures up to –50 °C // J. Power Sources. 2016. Vol. 309. P. 116–121. DOI: 10.1016/j.jpowsour.2016.01.075.
  18. Ярмоленко О. В., Баскакова Ю. В., Тулибаева Г. З., Богданова Л. М., Джавадян Э. А., Комаров Б. А., Сурков Н. Ф., Розенберг Б. А., Ефимов О. Н. Влияние растворителей на свойства полимерного гель-электролита на основе полиэфирдиакрилата // Электрохимия. 2009. Вып. 45, № 1. P. 107–113. DOI : 10.1134/S1023193509010145.
  19. Goodenough J. B., Kim Y. Challenges for rechargeable batteries // J. Power Sources. 2011. Vol. 196, № 15. P. 6688–6694. DOI: 10.1021/cm901452z.
  20. Bai Y., Tang Y., Wang Z., Jia Z., Wu F., Wu C., Liu G. Electrochemical performance of Si/CeO2 / Polyaniline composites as anode materials for lithium ion batteries // Solid State Ionics. 2015. Vol. 272. P. 24–29. DOI: 10.1016/ j.ssi.2014.12.016.
  21. Sun X. G., Angell C. A. New sulfone electrolytes for rechargeable lithium batteries. : Part I. Oli- goether-containing sulfones // Electrochem. Commun. 2005. Vol. 7. P. 261–266. DOI: 10.1016/j.elecom.2005.01.010.
  22. Abouimrane A., Belharouak I., Amine K. Sulfone-based electrolytes for high-voltage Li-ion batteries // Electrochem. Commun. 2009. Vol. 11. P. 1073–1076. DOI: 10.1016/j.elecom.2009.03.020.
  23. Li S., Li B., Xu X., Shi X., Zhao Y., Mao L, Cui X. Electrochemical performances of two kinds of electrolytes based on lithium bis(oxalate)borate and sulfolane for advanced lithium ion batteries // J. Power Sources. 2012. Vol. 209. P. 295–300. DOI: 10.1016/j.jpowsour.2012.03.004.
  24. Ping P., Wang Q., Kong D., Zhang C., Sun J., Chen C. Dimethyl sulfite as an additive for lithium bis(oxalate)borate/γ-Butyrolacton electrolyte to improve the performance of Li-ion battery // J. Electroanal. Chem. 2014. Vol. 731. P. 119–127. DOI: 10.1016/j.jelechem.2014.07.033.
  25. Xing L. D., Vatamanu J., Borodin O., Smith G. D., Bedrov D. Electrode/Electrolyte Interface in Sul- folane-Based Electrolytes for Li Ion Batteries : A Molecular Dynamics Simulation Study // J. Phys. Chem. С. 2012. Vol. 116, № 45. P. 23871–23881. DOI: 10.1021/jp3054179.
  26. Lee S. Y., Ueno L., Angell C. A. Lithium Salt Solutions in Mixed Sulfone and Sulfone-Carbonate Solvents : A Walden Plot Analysis of the Maximally Conductive Compositions // J. Phys. Chem. C. 2012. Vol. 116. P. 23915– 23920. DOI: 10.1021/jp3067519.
  27. Cui X., Zhang H., Li S., Zhao Y., Mao L., Zhao W., Li Y., Ye X. Electrochemical performances of a novel high-voltage electrolyte based upon sulfolane and γ-butyrolactone // J. Power Sources. 2013. Vol. 240. P. 476–485. DOI: 10.1016/j.jpowsour.2013.04.063.
  28. Xue L., Ueno K., Lee S. Y., Angell A. Enhanced performance of sulfone-based electrolytes at lithium ion battery electrodes, including the LiNi0.5Mn1.5O4 high voltage cathode // J. Power Sources. 2014. Vol. 262. P. 123–128. DOI: 10.1016/j.jpowsour.2014.03.099.
  29. Hofmann A., Schulz M., Indris S., Heinzmann R., Hanemann T. Mixtures of Ionic Liquid and Sul- folane as Electrolytes for Li-Ion Batteries // Electrochim. Acta. 2014. Vol. 147. P. 704–711. DOI: 10.1016/ j.electacta.2014.09.111.
  30. Wu F., Zhou H., Bai Y., Wang H., Wu C. Toward 5 V Li-Ion Batteries : Quantum Chemical Calculation and Electrochemical Characterization of Sulfone-Based High-Voltage Electrolytes // ACS Appl. Mater. Interfaces. 2015. Vol. 7, № 27. P. 15098–15107. DOI: 10.1021/acsami.5b04477.
  31. Nanbu N., Watanabe S., Takehara M., Ue M., Sasaki Y. Electrolytic characteristics of fluoromethyl methyl carbonate for lithium rechargeable batteries // J. Electroanal. Chem. 2009. Vol. 625. P. 7–15. DOI: 10.1016/ j.jelechem.2008.09.022.
  32. Fears T. M., Sacci R. L., Winiarz J. G., Kaiser H., Taub H., Veith G. M. A study of perfluorocarboxylate ester solvents for lithium ion battery electrolytes // J. Power Sources. 2015. Vol. 299. P. 434–442. DOI: 10.1016/ j.jpowsour.2015.08.098.
  33. Nagasubramanian G., Orendorff C. J. Hydrofluoroether electrolytes for lithium-ion batteries : Reduced gas decomposition and nonflammable // J. Power Sources. 2011. Vol. 196. P. 8604–8609. DOI: 10.1016/ j.jpowsour.2011.05.078.
  34. Newman G. H., Francis R. W., Gaines L. H., Rao B. M. Hazard investigations of LiClO4/dioxolane electrolyte // J. Electrochem. Soc. 1980. Vol. 127. P. 2025–2027. DOI: 10.1149/1.2130056.
  35. Jasinski R., Carroll S. Thermal Stability of a Propylene Carbonate Electrolyte // J. Electrochem. Soc. 1970. Vol. 117. P. 218–219. DOI: 10.1149/1.2407468.
  36. Колосницын В. С., Духанин Г. П., Думлер С. А., Новаков И. А. Литийпроводящие полимерные электролиты для химических источников тока // Журн. прикл. химии. 2005. Вып. 78, № 1. P. 3–20. DOI: 10.1007/s11167-005-0222-2.
  37. Yarmolenko O. V., Khatmullina K. G., Tulibaeva G. Z., Bogdanova L. M., Shestakov A. F. Towards the mechanism of Li+ ion transfer in the net solid polymer electrolyte based on polyethylene glycol diacrylate–LiClO4 // J. Solid State Electrochem. 2012. Vol. 16. P. 3371–3381. DOI: 10.1007/s10008-012-1781-9.
  38. Ue M., Fujii T., Zhou Z. B., Takeda M., Kinoshita S. Electrochemical properties of Li[CnF2n+1BF3] as elec- trolyte salts for lithium-ion cells // Solid State Ionics. 2006. Vol. 177. P. 323–331. DOI: 10.1016/j.ssi.2005.10.023.
  39. Plakhotnyk A. V., Ernst L., Schmutzler R. Hydrolysis in the system LiPF6–propylene carbonate–dimethyl carbonate–H2O // J. Fluorine Chem. 2005. Vol. 126, № 1. P. 27–31. DOI: 10.1016/j.jfluchem.2004.09.027.
  40. Campion C. L., Li W., Lucht B. L. Thermal decomposition of LiPF6-based electrolytes for lithium-ion batteries // J. Electrochem. Soc. 2005. Vol. 152, № 12. P. A2327–A2334. DOI: 10.1149/1.2083267.
  41. Wang X., Naito H., Sone Y., Segami G., Kuwajima S. Electrochemical behavior of LiFePO4/C cathode material for rechargeable lithium batteries // J. Electrochem. Soc. 2005. Vol. 152, № 10. P. A1996–A1973. DOI: 10.1149/1.2008988.
  42. Li W., Campion C., Lucht B. L., Ravdel B., DiCarlo J., Abrahamb K. M. Additives for stabilizing LiPF6- based electrolytes against thermal decomposition // J. Electrochem. Soc.. Vol. 152, № 7. P. A1361–A1365. DOI: 10.1149/1.1926651.
  43. Webber A. Conductivity and viscosity of solutions of LiCF3SO3, Li(CF3SO2)2N, and their mixtures // J. Electrochem. Soc. 1991. Vol. 138, № 9. P. 2586–2590. DOI: 10.1149/1.2087287.
  44. Foropoulos J., DesMarteau D. D. Synthesis, properties, and reactions of bis((trifluoromethyl)sulfonyl) imide, (CF3SO2)2NH // Inorg. Chem. 1984. Vol. 23, № 23. P. 3720–3723. DOI: 10.1021/ic00191a011.
  45. Ollivrin X., Alloin F., Nest J. F. L., Benrabah D., Sanchez J. Y. Lithium organic salts with extra function-alities // Electrochim. Acta. 2003. Vol. 48, № 14–16. P. 1961–1969. DOI: 10.1016/S0013-4686(03)00173-7.
  46. Gnanaraj J. S., Levi M. D., Gofer Y., Aurbach D., Schmidt M. LiPF3(CF2CF3)3 : a salt for rechargeable lithium ion batteries // J. Electrochem. Soc. 2003. Vol. 150, № 4. P. A445–A454. DOI: 10.1149/1.1557965.
  47. Gnanaraj J. S., Zinigrad E., Asraf L., Sprecher M., Gottlieb H. E., Geissler W., Schimidt M., Aurbach D. On the use of LiPF3(CF2CF3)3 (LiFAP) solutions for Li-ion batteries. Electrochemical and thermal studies // Electrochem. Commun. 2003. Vol. 5, № 11. P. 946–951. DOI: 10.1016/j.elecom.2003.08.020.
  48. Zinigrad E., Asraf L. L., Gnanaraj J. S., Gottlieb H. E., Sprecher M., Aurbach D. Calorimetric studies of the thermal stability of electrolyte solutions based on alkyl carbonates and the effect of the contact with lithium // J. Power Sources. 2005. Vol. 146, № 1–2. P. 176–179. DOI: 10.1016/j.jpowsour.2005.03.177.
  49. Aravindan V., Vickraman P. Polyvinylidenefluoride–hexafluoropropylene based nanocomposite polymer electrolytes (NCPE) complexed with LiPF3(CF3CF2)3 // Eur. Polym. J. 2007. Vol. 43, № 12. P. 5121–5127. DOI: 10.1016/j.eurpolymj.2007.10.003.
  50. Aravindan V., Vickraman P. Characterization of SiO2 and Al2O3 incorporated PVdF-HFP based composite polymer electrolytes with LiPF3(CF3CF2)3 // J. Appl. Polym. Sci. 2008. Vol. 108, № 2. P. 1314–1322. DOI: 10.1002/ app.27824.
  51. Aravindan V., Vickraman P., Kumar T. P. Polyvinylidene fluoride-hexafluoropropylene (PVdF–HFP)-based composite polymer electrolyte containing LiPF3(CF3CF2)3 // J. Non-Cryst. Solids. 2008. Vol. 354, № 29. P. 3451– 3457. DOI: 10.1016/j.jnoncrysol.2008.03.009.
  52. Aravindan V., Vickraman P. Lithium fluoroalkylphosphate based novel composite polymer electrolytes (NCPE) incorporated with nanosized SiO2 filler // Mater. Chem. Phys. 2009. Vol. 115, № 1. P. 251–257. DOI: 10.1016/j.matchemphys.2008.11.062.
  53. Aravindan V., Vickraman P., Sivashanmugam A., Thirunakaran R., Gopukumar S. LiFAP-based PVdF–HFP microporous membranes by phase-inversion technique with Li/LiFePO4 cell // Appl. Phys. A. 2009. Vol. 97, № 4. P. 811–819. DOI: 10.1007/s00339-009-5307-y.
  54. Zhou Z. B., Takeda M., Ue M. Novel electrolyte salts based on perfluoroalkyltrifluoroborate anions : 1. Syn- thesis and characterisation // J. Fluor Chem. 2003. Vol. 123, № 1. P. 127–131. DOI: 10.1016/S0022-1139(03)00111-8.
  55. Zhou Z. B., Takeda M., Fujii T., Ue M. Li[C2F5BF3] as an electrolyte salt for 4 V class lithium-ion cells // J. Electrochem. Soc. 2005. Vol. 152, № 2. P. A351–A356. DOI: 10.1149/1.1848211.
  56. Yu B. T., Qiu W. H., Li F. S., Xu G. X. The electrochemical characterization of lithium bis(oxalato)borate synthesized by a novel method. Electrochem // Solid-State Lett. 2006. Vol. 9, № 1. P. A1–A4. DOI: 10.1149/ 1.2128122.
  57. Scrosati B. Power sources for portable electronics and hybrid cars : lithium batteries and fuel cells // Chem. Rec. 2005. Vol. 5, № 5. P. 286–297. DOI: 10.1002/tcr.20054.
  58. Nakahara H., Yoon S. Y., Piao T., Mansfeld F., Nutt S. Effect of an additive to polysiloxane-based electrolyte on passive film formation on a graphite electrode // J. Power Sources. 2006. Vol. 158, № 1. P. 591–599. DOI: 10.1016/j.jpowsour.2005.09.050.
  59. Nakahara H., Yoon S. Y., Nutt S. Analysis of the passive surface film on a graphite electrode charged in polysiloxane-based electrolyte // J. Power Sources. 2006. Vol. 158, № 1. P. 600–607. DOI: 10.1016/ j.jpowsour.2005.09.041.
  60. Nakahara H., Nutt S. Compounds in solid electrolyte interface (SEI) on carbonaceous material charged in siloxane-based electrolyte // J. Power Sources. 2006. Vol. 160, № 2. P. 1355–1360. DOI: 10.1016/ j.jpowsour.2006.02.088.
  61. Aravindan V., Vickraman P. A study on LiBOB-based nanocomposite gel polymer electrolytes (NCGPE) for Lithium-ion batteries // Ionics. 2007. Vol. 13, № 4. P. 277–280. DOI : 10.1007/s11581-007-0106-y.
  62. Aravindan V., Vickraman P. Effects of TiO2 and ZrO2 nanofillers in LiBOB based PVdF/PVC composite polymer electrolytes (CPE) // J. Phys. D. Appl. Phys. 2007. Vol. 40, № 21. P. 6754–6759. DOI: 10.1088/0022-3727/ 40/21/040.
  63. Aravindan V., Vickraman P., Kumar T. P. ZrO2 nanofiller incorporated PVC/PVdF blend-based composite polymer electrolytes (CPE) complexed with LiBOB // J. Membr. Sci. 2007. Vol. 305, № 1–2. P. 146–151. DOI: 10.1016/j.memsci.2007.07.044.
  64. Aravindan V., Vickraman P. Synthesis and characterization of LiBOB-based PVdF/PVC-TiO2 composite polymer electrolytes // Polym. Eng. Sci. 2009. Vol. 49, № 11. P. 2109–2115. DOI: 10.1002/pen.21463.
  65. Zhang S. S., Xu K., Jow T. R. LiBOB-based gel electrolyte Li-ion battery for high temperature operation // J. Power Sources. 2006. Vol. 154, № 1. P. 276–280. DOI: 10.1016/j.jpowsour.2005.03.196.
  66. Zhang S. S., Xu K., Jow T. R. Enhanced performance of Li-ion cell with LiBF4-PC based electrolyte by addition of small amount of LiBOB // J. Power Sources. 2006. Vol. 156, № 2. P. 629–633. DOI: 10.1016/ j.jpowsour.2005.04.023.
  67. Chen Z., Lu W. Q., Liu J., Amine K. LiPF6/LiBOB blend salt electrolyte for high-power lithium-ion batteries // Electrochim. Acta. 2006. Vol. 51, № 16. P. 3322–3326. DOI: 10.1016/j.electacta.2005.09.027.
  68. Xu W., Deng Z., Zhou X., Bolomey P. LiBOB as additive and mixed salt in electrolytes for rechargeable lithium ion batteries // 210th ECS Meet. Abstr. Electrochem. Soc. Cancun, 2006. P. 251.
  69. Zinigrad E., Asraf L. L., Gnanaraj J. S., Salitra G., Aurbach D. On the thermal behavior of LiBOB, LiPF6 and their solutions, a comparative Study // 210th ECS Meet. Abstr. Electrochem. Soc. Cancun, 2006. P. 245
  70. Azeez F., Li Y., Fedkiw P. LiBOB based electrolyte for Li ion batteries // 208th ECS Meet. Abstr. Electrochem. Soc. Los Angeles, 2005. Abstract № 220.
  71. Xu K., Lee U., Zhang S., Jow R. Recent Progress in LiBOB-based Electrolytes // 208th ECS Meet. Abstr. Electrochem. Soc. Los Angeles, 2005, Abstract № 219.
  72. Xu K., Zhang S. S., Lee U., Allen J. L., Jow T. R. LiBOB : Is it an alternative salt for lithium ion chemistry? // J. Power Sources. 2005. Vol. 146, № 1–2. P. 79–85. DOI: 10.1016/j.jpowsour.2005.03.153.
  73. Zhang S. S. An unique lithium salt for the improved electrolyte of Li-ion battery // Electrochem. Commun. 2006. Vol. 8, № 9. P. 1423–1428. DOI: 10.1016/j.elecom.2006.06.016.
  74. Zhang S. S. Lithium Oxalyldifluoroborate as a Salt for the Improved Electrolytes of Li-Ion Batteries // 210th ECS Meet. Abstr. Electrochem. Soc. Cancun, 2006. P. 267.
  75. Zygadło-Monikowska E., Florjańczyk Z., Kubisa P., Biedroń T., Tomaszewska A., Ostrowska J., Lang- wald N. Mixture of LiBF4 and lithium difluoro(oxalato)borate for application as a new electrolyte for lithium-ion batteries // J. Power Sources. 2010. Vol. 195, № 18. P. 6202–6206. DOI: 10.1016/j.jpowsour.2009.10.083.
  76. Aravindan V., Vickraman P. A novel gel electrolyte with lithium difluoro(oxalato)borate salt and Sb2O3 nanoparticles for lithium ion batteries // Solid State Sci. 2007. Vol. 9, № 11. P. 1069–1073. DOI: 10.1016/ j.solidstatesciences.2007.07.011.
  77. Aravindan V., Vickraman P., Krishnaraj K. Lithium difluoro(oxalate)borate-based novel nanocomposite polymer electrolytes for lithium ion batteries // Polym. Intern. 2008. Vol. 57, № 7. P. 932–938. DOI: 10.1002/pi.2430.
  78. Aravindan V., Vickraman P., Krishnaraj K. Li+ ion conduction in TiO2 filled polyvinylidenefluoride-co-hexafluoropropylene based novel nanocomposite polymer electrolyte membranes with LiDFOB // Curr. Appl. Phys. 2009. Vol. 9, № 6. P. 1474–1479. DOI: 10.1016/j.cap.2009.04.001.
  79. Li J., Xie K., Lai Y., Zhang Z., Li F., Hao X., Chen X., Liu Y. Lithium oxalyldifluoroborate/carbonate electrolytes for LiFePO4/artificial graphite lithium-ion cells // J. Power Sources. 2010. Vol. 195, № 16. P. 5344– 5350. DOI: 10.1016/j.jpowsour.2010.03.038.
  80. Zhang Z., Chen X., Li F., Lai Y., Li J., Liu P., Wang X. LiPF6 and lithium oxalyldifluoroborate blend salts electrolyte for LiFePO4/artificial graphite lithium-ion cells // J. Power Sources. 2010. Vol. 195, № 21. P. 7397–7402. DOI: 10.1016/j.jpowsour.2010.05.056.
  81. Xu W., Shusterman A. J., Videa M., Velikov V., Marzke R., Angell C. A. Structures of orthoborate anions and physical properties of their lithium salt nonaqueous solutions // J. Electrochem. Soc. 2003. Vol. 150, № 1. P. E74–E80. DOI: 10.1149/1.1527939.
  82. Armand M., Johansson P. Novel weakly coordinating heterocyclic anions for use in lithium batteries // J. Power Sources. 2008. Vol. 178, № 2. P. 821–825. DOI: 10.1016/j.jpowsour.2007.08.062.
  83. Scheers J., Lim D.-H., Kim J.-K., Paillard E., Henderson W. A., Johansson P., Ahn J.-H., Jacobsson P. All fluorine-free lithium battery electrolytes // J. Power Sources. 2014. Vol. 251. P. 451–458. DOI: 10.1016/ j.jpowsour.2013.11.042.
  84. Bukowska M., Prejzner J., Szczeciński P. Synthesis of 4,5-dicyanoimidazoles // Polish J. Chem. 2004. Vol. 78, № 3. P. 417–422.
  85. Niedzicki L., Grugeon S., Laruelle S., Judeinstein P., Bukowska M., Prejzner J., Szczeciñski P., Wiec- zorek W., Armand M. New covalent salts of the 4+ V class for Li batteries // J. Power Sources. 2011. Vol. 196, № 20. P. 8696–8700. DOI: 10.1016/j.jpowsour.2011.06.030.
  86. Scheers J., Niedzicki L., Zukowska G. Z., Johansson P., Wieczorek W., Jacobsson P. Ion-ion and ion-solvent interactions in lithium imidazolide electrolytes studied by Raman spectroscopy and DFT models // Phys. Chem. Chem. Phys. 2011. Vol. 13. P. 11136–11147. DOI: 10.1039/C1CP20063A.
  87. Niedzicki L., Kasprzyk M., Kuziak K., Zukowska G. Z., Armand M., Bukowska M., Marcinek M., Szczeciñs- ki P., Wieczorek W. Modern generation of polymer electrolytes based on lithium conductive imidazole salts // J. Power Sources. 2009. Vol. 192, № 2. P. 612–617. DOI: 10.1016/j.jpowsour.2009.03.050.
  88. Niedzicki L., Zukowska G. Z., Bukowska M., Szczeciñski P., Grugeon S., Laruelle S., Armand M., Panero S., Scrosati B., Marcinek M., et al. New type of imidazole based salts designed specifically for lithium ion batteries // Electrochim. Acta. 2010. Vol. 55, № 4. P. 1450–1454. DOI: 10.1016/j.electacta.2009.05.008.
  89. Niedzicki L., Kasprzyk M., Kuziak K., Zukowska G. Z., Marcinek M., Wieczorek W., Armand M. Liquid electrolytes based on new lithium conductive imidazole salts // J. Power Sources. 2011. Vol. 196, № 3. P. 1386–1391. DOI: 10.1016/j.jpowsour.2010.08.097.
  90. Scheers J., Johansson P., Szczeciñski P., Wieczorek W., Armand M., Jacobsson P. Benzimidazole and imidazole lithium salts for battery electrolytes // J. Power Sources. 2010. Vol. 195, № 18. P. 6081–6087. DOI : 10.1016/ j.jpowsour.2009.12.052.
  91. Dranka M., Niedzicki L., Kasprzyk M., Marcinek M., Wieczorek W., Zachara J. An insight into coordination ability of dicyanoimidazolato anions toward lithium in presence of acetonitrile. Crystal structures of novel lithium battery electrolyte salts // Polyhedron. 2013. Vol. 51. P. 111–116. DOI: 10.1016/j.poly.2012.12.022.
  92. McOwen D. W., Delp S. A., Paillard E., Herriot C., Han S.-D., Boyle P. D., Sommer R. D., Henderson W. A. Anion Coordination Interactions in Solvates with the Lithium Salts LiDCTA and LiTDI // J. Phys. Chem. C. 2014. Vol. 118, № 15. P. 7781–7787. DOI: 10.1021/jp412601x.
  93. Paillet S., Schmidt G., Ladouceur S., Frechette J., Barray F., Clement D., Hovington P., Guerfi A., Vijh A., Cayrefourcq I., Zaghib K. Determination of the electrochemical performance and stability of the lithium-salt, lithium 4,5-dicyano-2-(trifluoromethyl) imidazolide, with various anodes in Li-ion cells // J. Power Sources. 2015. Vol. 299. P. 309–314. DOI: 10.1016/j.jpowsour.2015.08.102.
  94. Шестаков А. Ф., Юдина А. В., Тулибаева Г. З., Хатмуллина К. Г., Дорофеева Т. В., Ярмоленко О. В. Эмпирическая формула для описания концентрационной зависимости проводимости органических электролитов для литиевых источников тока в окрестности максимума // Электрохимия. 2014. Вып. 50, № 11. P. 1143–1151. DOI: 10.7868/S0424857014110115.
  95. Тулибаева Г. З., Ярмоленко О. В., Шестаков А. Ф. Изменение состава сольватной оболочки ионов лития в γ-бутиролактоне при добавлении 15 краун-5 по данным квантово-химического моделирования // Изв. АН. Сер. хим. 2009. Вып. 58. P. 1542–1550.
  96. Ярмоленко О. В., Ефимов О. Н. Влияние дибензо-18-краун-6 на поведение границы полимерный электролит/литиевый анод // Электрохимия. 2005. Вып. 41, № 5. P. 646–650. DOI: 10.1007/s11175-005-0107-y.
  97. Баскакова Ю. В., Ярмоленко О. В., Шувалова Н. И., Тулибаева Г. З., Ефимов О. Н. Влияние 15- краун-5 эфира на сопротивление переноса заряда на границе полимерный электролит/модифицированный Li-электрод // Электрохимия. 2006. Вып. 42, № 9. P. 1055–1059. DOI: 10.1134/S1023193506090060.
  98. Тулибаева Г. З., Ярмоленко О. В., Шестаков А. Ф. Транспорт ионов лития в литиевых источниках тока. Эксперимент и теория. Saarbrucken : LAP LAMBERT Academic Publishing GmbH & Co. KG, 2011. 136 с.
  99. Ярмоленко О. В., Тулибаева Г. З., Петрова Г. Н., Шестаков А. Ф., Шувалова Н. И., Мартыненко В. М., Ефимов О. Н. Экспериментальное и теоретическое исследование реакции разложения γ-бутиролактона на поверхности литиевого электрода. Влияние слоя Li3N // Изв. АН. Сер. хим. 2010. Вып. 59, № 3. P. 500–506.
  100. Ярмоленко О. В., Тулибаева Г. З. Прикладные и теоретические аспекты использования краун-эфиров в литиевых электрохимических системах // Альтернативная энергетика и экология. 2013. Вып. 117. P. 60–72.
  101. Zhang S. S., Xu K., Jow T. R. EIS study on the formation of solid electrolyte interface in Li-ion battery // Electrochim. Acta. 2006. Vol. 51, № 8–9. P. 1636–1640. DOI: 10.1016/j.electacta.2005.02.137.
  102. Chen G., Zhuang G. V., Richardson T. J., Liu G., Ross J. P. N. Anodic polymerization of vinyl ethylene carbonate in Li-ion battery electrolyte // Electrochem. Solid-State Lett. 2005. Vol. 8, № 7. P. A344–A347. DOI: 10.1149/1.1921127.
  103. Sasaki T., Abe T., Iriyama Y., Inaba M., Ogumi Z. Suppression of an alkyl dicarbonate formation in Li-ion cells // J. Electrochem. Soc. 2005. Vol. 152, № 10. P. A2046–A2050. DOI: 10.1149/1.2034517.
  104. Lu M., Cheng H., Yang Y. A comparison of solid electrolyte interphase (SEI) on the artificial graphite anode of the aged and cycled commercial lithium ion cells // Electrochim. Acta. 2008. Vol. 53, № 9. P. 3539–3546. DOI: 10.1016/j.electacta.2007.09.062.
  105. Madec L., Petibon R., Tasaki K., Xia J., Sun J.-P., Hill I. G., Dahn J. R. Mechanism of action of ethylene sulfite and vinylene carbonate electrolyte additives in LiNi1/3Mn1/3Co1/3O2/graphite pouch cells : electrochemical, GC–MS and XPS analysis // Phys. Chem. Chem. Phys. 2015. Vol. 17. P. 27062–27076. DOI: 10.1039/C5CP04221F.
  106. Petibon R., Henry E. C., Burns J. C., Sinha N. N., Dahn J. R. Comparative study of vinyl ethylene carbonate (VEC) and vinylene carbonate (VC) in LiCoO2/graphite pouch cells using high precision coulometry and electrochemical impedance spectroscopy measurements on symmetric cells // J. Electrochem. Soc. 2014. Vol. 161, № 1. P. A66–A74. DOI: 10.1149/2.030401jes.
  107. Komaba S., Itabashi T., Ohtsuka T., Groult H., Kumagai N., Kaplan B., Yashiroa H. Impact of 2- vinylpyridine as electrolyte additive on surface and electrochemistry of graphite for C⁄LiMn2O4 Li-ion cells // J. Electrochem. Soc. 2005. Vol. 152, № 5. P. A937–A946. DOI: 10.1149/1.1885385.
  108. Ufheil J., Baertsch M. C., Würsig A., Novák P. Maleic anhydride as an additive to γ-butyrolactone solutions for Li-ion batteries // Electrochim. Acta. 2005. Vol. 50, № 7–8. P. 1733–1738. DOI: 10.1016/j.electacta.2004.10.061.
  109. Patent 6872493, USNonaqueous electrolytic solution and nonaqueous secondary battery / Yamada M., Usami K., Awano N., Kubota N., Takeuchi Y. . 2005.
  110. Schroeder G., Gierczyk B., Waszak D., Kopczyk M., Walkowiak M. Vinyl tris-2-methoxyethoxy silane – A new class of film-forming electrolyte components for Li-ion cells with graphite anodes // Electrochem. Commun. 2006. Vol. 8, № 4. P. 523–527. DOI: 10.1016/j.elecom.2006.01.021.
  111. Korepp C., Santner H. J., Fujii T., Ue M., Besenhard J. O., Moller K. C., Winter M. 2-Cyanofuran – A novel vinylene electrolyte additive for PC-based electrolytes in lithium-ion batteries // J. Power Sources. 2006. Vol. 158, № 1. P. 578–582. DOI: 10.1016/j.jpowsour.2005.09.021.
  112. Holzapfel M., Jost C., Prodi-Schwab A., Krumeich F., Würsig A., Buqa H., Novák P. Stabilisation of lithiated graphite in an electrolyte based on ionic liquids : an electrochemical and scanning electron microscopy study // Carbon. 2005. Vol. 43, № 7. P. 1488–1498. DOI: 10.1016/j.carbon.2005.01.030.
  113. Shim E.-G., Nam T.-H., Kim J.-G., Kim H.-S., Moon S.-I. Effects of functional electrolyte additives for Li-ion batteries // J. Power Sources. 2007. Vol. 172, № 2. P. 901–907. DOI: 10.1016/j.jpowsour.2007.04.089.
  114. Chen L., Wang K., Xie X., Xie J. Effect of vinylene carbonate (VC) as electrolyte additive on electrochem- ical performance of Si film anode for lithium ion batteries // J. Power Sources. 2007. Vol. 174, № 2. P. 538–543. DOI: 10.1016/j.jpowsour.2007.06.149.
  115. Zuo X. X., Xu M. Q., Li W. S., Su D. G., Liu J. S. Electrochemical reduction of 1,3-propane sultone on graphite electrodes and its application in Li-ion batteries. Electrochem // Solid-State Lett. 2006. Vol. 9, № 4. P. A196–A199. DOI: 10.1149/1.2170462.
  116. Xu M., Li W., Lucht B. L. Effect of propane sultone on elevated temperature performance of anode and cathode materials in lithium-ion batteries // J. Power Sources. 2009. Vol. 193, № 2. P. 804–809. DOI: 10.1016/ j.jpowsour.2009.03.067.
  117. Aurbach D., Markovsky B., Salitra G., Markevich E., Talyossef Y., Koltypin M., Nazar L., Ellis B., Ko- vacheva D. Review on electrode-electrolyte solution interactions, related to cathode materials for Li-ion batteries // J. Power Sources. 2007. Vol. 165, № 2. P. 491–499. DOI: 10.1016/j.jpowsour.2006.10.025.
  118. Santee S., Xiao A., Yang L., Gnanaraj J., Lucht B. L. Effect of combinations of additives on the performance of lithium ion batteries // J. Power Sources. 2009. Vol. 194, № 2. P. 1053–1060. DOI: 10.1016/ j.jpowsour.2009.06.012.
  119. Zhuang G. V., Yang H., Blizanac B., Ross Jr P. N. A Study of Electrochemical Reduction of Ethylene and Propylene Carbonate Electrolytes on Graphite Using ATR-FTIR Spectroscopy // Electrochem. Solid-State Lett. 2005. Vol. 8, № 9. P. A441–A445. DOI: 10.1149/1.1979327.
  120. Lee J. T., Wu M. S.,.Wang F. M, Lin Y. W., Bai M. Y., Chiang P. C. Effects of Aromatic Esters as Propylene Carbonate-Based Electrolyte Additives in Lithium-Ion Batteries // J. Electrochem. Soc. 2005. Vol. 152, № 9. P. A1837–A1843. DOI: 10.1149/1.1993407.
  121. Xu K., Zhang S. S., Jow T. R. LiBOB as additive in LiPF6-based lithium ion electrolytesbatteries, fuel cells, and energy conversion. Electrochem // Solid-State Lett. 2005. Vol. 8, № 7. P. A365–A368. DOI: 10.1149/ 1.1924930.
  122. Chen Z. H., Amine K. Tris(pentafluorophenyl) borane as an additive to improve the power capabilities of lithium-ion batteries // J. Electrochem. Soc. 2006. Vol. 153, № 6. P. A1221–A1225. DOI: 10.1149/1.2194633.
  123. Chang C.-C., Chen T.-K. Tris(pentafluorophenyl) Borane as an electrolyte additive for LiFePO4 cathode material to improve high temperature cycling efficiency // 215th ECS Meeting. San Francisco, USA, 2009. Abstract № 160.
  124. Komaba S., Watanabe M., Groult H., Kumagai N., Okaharad K. Impact of sodium salt coating on a graphite negative electrode for lithium-ion batteries. Electrochem // Solid-State Lett. 2006. Vol. 9, № 3. P. A130–A133. DOI: 10.1149/1.2161453.
  125. Komaba S., Itabashi T., Kimura T., Groult H., Kumagai N. Opposite influences of K+ versus Na+ ions as electrolyte additives on graphite electrode performance // J. Power Sources. 2005. Vol. 146, № 1–2. P. 166–170. DOI: 10.1016/j.jpowsour.2005.03.121.
  126. Zheng H., Fu Y., Zhang H., Abe T., Ogumi Z. Potassium Salts : Electrolyte additives for enhancing electrochemical performances of natural graphite anodes. Electrochem // Solid-State Lett. 2006. Vol. 9, № 3. P. A115–A119. DOI: 10.1149/1.2161447.
  127. Buhrmester C., Chen J., Moshurchak L., Jiang J., Wang R. L., Dahn J. R. Studies of aromatic redox shuttle additives for LiFePO4-based Li-ion cells // J. Electrochem. Soc. 2005. Vol. 152, № 12. P. A2390–A2399. DOI: 10.1149/1.2098265.
  128. Chen J., Buhrmester C., Dahn J. R. Chemical overcharge and overdischarge protection for lithium-ion batteries. Electrochem // Solid-State Lett. 2005. Vol. 8, № 1. P. A59–A62. DOI: 10.1149/1.1836119.
  129. Moshurchak L. M., Buhrmester C., Dahn J. R. Spectroelectrochemical studies of redox shuttle overcharge additive for LiFePO4-based Li-ion batteries // J. Electrochem. Soc. 2005. Vol. 152, № 6. P. A1279–A1282. DOI: 10.1149/1.1896327.
  130. Dahn J. R., Jiang J., Fleischauer M. D., Buhrmester C., Krause L. J. High-rate overcharge protection of LiFePO4-based Li-ion cells using the redox shuttle additive 2,5-ditertbutyl-1,4-dimethoxybenzene. Batteries, fuel cells, and energy conversion // J. Electrochem. Soc. 2005. Vol. 152, № 6. P. A1283–A1289. DOI: 10.1149/1.1906025.
  131. Dantsin G., Jambunathan K., Ivanov S. V., Casteel W. J., Amine K., Liu J., Jansen A. N., Chen Z. Advanced electrolyte salts with inherent overcharge protection for lithium ion batteries // 208th ECS Meet. Abstr. Electrochem. Soc. Los Angeles, CA, 2005. Abstract № 223.
  132. Lee H., Lee J. H., Ahn S., Kim H. J., Cho J. J. Co-use of cyclohexyl benzene and biphenyl for overcharge protection of lithium-ion batteries. Electrochem // Solid-State Lett. 2006. Vol. 9, № 6. P. A307–A310. DOI: 10.1149/1.2193072.
  133. Patent 6921612 US. Nonaqueous electrolyte composition for improving overcharge safety and lithium battery using the same / Choy S., Noh H., Lee H., Sun H., Kim H. . 2005.
  134. Abe K., Ushigoe Y., Yoshitake H., Yoshio M. Functional electrolytes : Novel type additives for cathode materials, providing high cycleability performance // J. Power Sources. 2006. Vol. 153, № 2. P. 328–335. DOI: 10.1016/j.jpowsour.2005.05.067.
  135. Amine K., Liu J., Belharouak I., Kang S. H., Bloom I., Vissers D., Henriksen G. Advanced cathode materials for high-power applications // J. Power Sources. 2005. Vol. 146, № 1–2. P. 111–115. DOI: 10.1016/ j.jpowsour.2005.03.227.
  136. Feng J. K., Ai X. P., Cao Y. L., Yang H. X. Polytriphenylamine used as an electroactive separator material for overcharge protection of rechargeable lithium battery // J. Power Sources. 2006. Vol. 161, № 1. P. 545–549. DOI: 10.1016/j.jpowsour.2006.03.040.
  137. Shima K., Shizuka K., Ue M., Ota H., Hatozaki T., Yamaki J.-I. Reaction mechanisms of aromatic compounds as an overcharge protection agent for 4 V class lithium-ion cells // J. Power Sources. 2006. Vol. 161, № 2. P. 1264–1274. DOI: 10.1016/j.jpowsour.2006.05.029.
  138. Wang Q., Sun J., Yao X., Chen C. 4-Isopropyl phenyl diphenyl phosphate as flame-retardant additive for lithium-ion battery electrolyte. Electrochem // Solid-State Lett. 2005. Vol. 8, № 9. P. A467–A470. DOI: 10.1149/ 1.1993389.
  139. Yao X. L., Xie S., Chen C. H., Wang Q. S., Sun J. H., Li Y. L., Lu S. X. Comparative study of trimethyl phosphite and trimethyl phosphate as electrolyte additives in lithium ion batteries // J. Power Sources. 2005. Vol. 144, № 1. P. 170–175. DOI: 10.1016/j.jpowsour.2004.11.042.
  140. Patent 6924061. US. Nonflammable non-aqueous electrolyte and non-aqueous electrolyte cells com- prising the same / Jow T. R., Xu K., Zhang S., Ding M. S.. 2005.
  141. Shim E.-G., Nam T.-H., Kim J.-G., Kim H.-S., Moon S.-I. Effect of the concentration of diphenyloctyl phosphate as a flame-retarding additive on the electrochemical performance of lithium-ion batteries // Electrochim. Acta. 2009. Vol. 54, № 8. P. 2276–2283. DOI: 10.1016/j.electacta.2008.10.037.
  142. Shim E.-G., Nam T.-H., Kim J.-G., Kim H.-S., Moon S.-I. Diphenyloctyl phosphate as a flame-retardant additive in electrolyte for Li-ion batteries // J. Power Sources. 2008. Vol. 175, № 1. P. 533–539. DOI: 10.1016/ j.jpowsour.2007.08.098.
  143. Shim E.-G., Nam T.-H., Kim J.-G., Kim H.-S., Moon S.-I. Effect of vinyl acetate plus vinylene carbonate and vinyl ethylene carbonate plus biphenyl as electrolyte additives on the electrochemical performance of Li-ion batteries // Electrochim. Acta. 2007. Vol. 53, № 2. P. 650–656. DOI: 10.1016/j.electacta.2007.07.026.
  144. Wang Q., Sun J. Enhancing the safety of lithium ion batteries by 4-isopropyl phenyl diphenyl phosphate // Mater. Lett. 2007. Vol. 61. P. 3338–3340. DOI: 10.1016/j.matlet.2006.11.060.
  145. Wang Q., Sun J., Chen C. Improved thermal stability of graphite electrodes in lithium-ion batteries using 4-isopropyl phenyl diphenyl phosphate as an additive // J. Appl. Electrochem. 2009. Vol. 39, № 7. P. 1105–1110. DOI: 10.1007/s10800-008-9765-2.
  146. Wang Q., Ping P., Sun J., Chen C. Improved thermal stability of lithium ion battery by using cresyl diphenyl phosphate as an electrolyte additive // J. Power Sources. 2010. Vol. 195, № 21. P. 7457–7461. DOI: 10.1016/j.jpowsour.2010.05.022.
  147. Feng J. K., Cao Y. L., Ai X. P., Yang H. X. Tri-(4-methoxythphenyl) phosphate : A new electrolyte additive with both fire-retardancy and overcharge protection for Li-ion batteries // Electrochim. Acta. 2008. Vol. 53, № 28. P. 8265–8268. DOI: 10.1016/j.electacta.2008.05.024.
  148. Feng J. K., Sun X. J., Ai X. P., Cao Y. L., Yang H. X. Dimethyl methyl phosphate : A new nonflammable electrolyte solvent for lithium-ion batteries // J. Power Sources. 2008. Vol. 184, № 2. P. 570–573. DOI: 10.1016/ j.jpowsour.2008.02.006.
  149. Mandal B. K., Padhi A. K., Shi Z., Chakraborty S., Filler R. Thermal runaway inhibitors for lithium battery electrolytes // J. Power Sources. 2006. Vol. 161, № 2. P. 1341–1345. DOI: 10.1016/j.jpowsour.2006.06.008.
  150. Kam D., Kim K., Kim H.-S., Liu H. K. Studies on film formation on cathodes using pyrazole derivatives as electrolyte additives in the Li-ion battery // Electrochem. Commun. 2009. Vol. 11, № 8. P. 1657–1660. DOI: 10.1016/j.elecom.2009.06.020.
  151. Kim K., Ahn S., Kim H.-S., Liu H.-K. Electrochemical and thermal properties of 2,4,6-tris(trifluoromethyl)- 1,3,5-triazine as a flame retardant additive in Li-ion batteries // Electrochim. Acta. 2009. Vol. 54, № 8. P. 2259–2265. DOI: 10.1016/j.electacta.2008.10.043.
  152. Patent 6939647. US. Non-aqueous electrolyte solutions and non-aqueous electrolyte cells comprising the same / Jow T. R., Zhang S., Xu K., Ding M. S.. 2005.
  153. Armand M., Endres F., MacFarlane D. R., Ohno H., Scrosati B. Ionic-liquid materials for the electro- chemical challenges of the future // Nat. Mater. 2009. Vol. 8. P. 621–629. DOI: 10.1038/nmat2448.
  154. Hayamizu K., Aihara Y., Nakagawa H., Nukuda T., Price W. S. Ionic conduction and ion diffusion in binary room-temperature ionic liquids composed of [emim][BF4] and LiBF4 // J. Phys. Chem. B. 2004. Vol. 108, № 50. P. 19527–19532. DOI: 10.1021/jp0476601.
  155. Ярмоленко О. В., Юдина А. В., Игнатова А. А., Шувалова Н. И., Мартыненко В. М., Богданова Л. М., Черняк А. В., Забродин В. А., Волков В. И. Новые полимерные электролиты состава диакрилат полиэтиленгликоля-LiBF4-тетрафторборат 1-этил-3-метилимидазолия с введением алкиленкарбонатов // Изв. АН. Сер. хим. 2015. Вып. 64, № 10. P. 2505–2511. DOI: 10.1007/s11172-015-1184-z.
  156. Юдина А. В., Игнатова А. А., Шувалова Н. И., Мартыненко В. М., Ярмоленко О. В. Влияние добавки ионных жидкостей EMIBF4 и BMIBF4 на свойства сетчатых полимерных электролитов для литиевых источников тока // Электрохим. энергетика. 2014. Вып. 14, № 3. P. 158–163.
  157. Nakagawa H. Electrolytes Containing Ionic Liquids for Improved Safety of Lithium-ion Batteries // Electrochemistry. 2015. Vol. 83, № 9. P. 707–710. DOI: 10.5796/electrochemistry.83.707.
  158. Guerfi A., Dontigny M., Charest P., Petitclerc M., Lagacґe M., Vijh A., Zaghib K. Improved electrolytes for Li-ion batteries : Mixtures of ionic liquid and organic electrolyte with enhanced safety and electrochemical performance // J. Power Sources. 2010. Vol. 195, № 3. P. 845–852. DOI: 10.1016/j.jpowsour.2009.08.056.
  159. Ue M. Application of ionic liquids to double-layer capacitors. Electrochemical Aspects of Ionic Liquids / eds. H. Ohno. Hoboken, NJ, Wiley, 2005. 392 p. DOI: 10.1002/0471762512.ch17.
  160. Webber A., Blomgren G. E. Ionic liquids for lithium ion and related batteries. Advances in Lithium-Ion Batteries / eds. W. A. Schalkwijk, B. Scrosati. N.Y. : Kluwer Academic Publishers, 2002. 513 p. DOI: 10.1007/ 0-306-47508-1_7.
  161. Larush L., Borgel V., Markevich E., Haik O., Zinigrad E., Aurbach D., Semrau G., Schmidt M. On the thermal behavior of model Li-LixCoO2 systems containing ionic liquids in standard electrolyte solutions // J. Power Sources. 2009. Vol. 189, № 1. P. 217–223. DOI: 10.1016/j.jpowsour.2008.09.099.
  162. Arbizzani C., Gabrielli G., Mastragostino M. Thermal stability and flammability of electrolytes for lithi- um-ion batteries // J. Power Sources. 2011. Vol. 196, № 10. P. 4801–4805. DOI: 10.1016/j.jpowsour.2011.01.068.
  163. An Y., Zuo P., Cheng X., Liao L., Yin G. The effects of LiBOB additive for stable SEI formation of PP13TFSI-organic mixed electrolyte in lithium ion batteries // Electrochim. Acta. 2011. Vol. 56, № 13. P. 4841– 4848. DOI: 10.1016/j.electacta.2011.01.125.
  164. Lalia B. S., Yoshimoto N., Egashira M., Morita M. A mixture of triethylphosphate and ethylene carbonate as a safe additive for ionic liquid-based electrolytes of lithium ion batteries // J. Power Sources. 2010. Vol. 195, № 21. P. 7426–7431. DOI: 10.1016/j.jpowsour.2010.05.040.
  165. Lewandowski A., Swiderska-Mocek A. Ionic liquids as electrolytes for Li-ion batteries – An overview of electrochemical studies // J. Power Sources. 2009. Vol. 194, № 2. P. 601–609. DOI: 10.1016/j.jpowsour.2009.06.089.
  166. Reale P., Fernicola A., Scrosati B. Compatibility of the Py24TFSI–LiTFSI ionic liquid solution with Li4Ti5O12 and LiFePO4 lithium ion battery electrodes // J. Power Sources. 2009. Vol. 194, № 1. P. 182–189. DOI: 10.1016/j.jpowsour.2009.05.016.
  167. Ярославцев А. Б., Кулова Т. Л., Скундин А. М. Электродные наноматериалы для литий-ионных аккумуляторов // Успехи химии. 2015. Вып. 84, № 8. P. 826–852. DOI: 10.1070/RCR4497.
  168. Балагуров А. М., Бобриков И. А., Самойлова Н. Ю., Дрожжин О. А., Антипов Е. В. Применение рассеяния нейтронов для анализа процессов в литий-ионных аккумуляторах // Успехи химии. 2014. Вып. 83, № 12. P. 1120–1134. DOI : 10.1070/RCR4473.
стр. 155
Текст в формате PDF:
(downloads: 182)
Файл статьи: