ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


углеродные нанотрубки

Composite electrodes based on Li3V2(PO4)3, Li4Ti5O12 and carbon nanotubes: The influence of composition, thickness and surface morphology on electrochemical properties

The influence of the composition, the thickness and the surface morphology of Li3V2(PO4)3 or Li4Ti5O12 based electrode composites with carbon nanomaterial and polyvinylidene fluoride on their electrochemical performance was examined. The thickness and the surface morphology of the electrodes were jointly controlled by rolling with different gaps and monitored using 3D laser microscopy and scanning electron microscopy.

Optimized catalysts for direct ethanol fuel cell

Ethanol electrooxidation catalyst PtSn (3:1, 40% Pt) on pyrolytic double-walled carbon nanotubes as a carrier was synthesized by means of modified polyol method. Electrocatalytic activity of the synthesized catalyst in model conditions (0.5М H2SO4 + 1М С2Н5ОН) is higher than that for analogous catalyst on XC 72 carbon and equals to 70 mA/mgcat (E = 0.4 V).

Effect of properties of carbon materials on specific energy and cycling of lithium-sulfur batteries

The effect of the structure and the specific surface area of carbon materials, contained in positive electrodes, on the peculiarities of cycling of lithium-sulfur cells (the depth of electrochemical reduction of sulfur and lithium polysulfides, the changes in capacity and Coulomb efficiency of cycling) was studied.

Electrochemical behavior of superfine carbon in electrolytes based on ionic liquid 1-methyl-3-butylimidazol tetrafluorborate

A various features of the electrochemical behavior of number superfine carbon materials in electrolyte based on an ionic liquid 1-methyl-3-butilimidazolium tetrafluorineborate (1Me3BuImBF4) were determined by voltammetry and impedance methods. A comparative analysis of the effect of the type and nature of the electrolyte material on the main electrochemical characteristics of carbon electrodes which may be used in supercapacitors was done.

Electrooxidation of Formic Acid at Nanostructural Composites of Palladium and Polyaniline

DOI: https://doi.org/10.18500/1608-4039-2018-18-3-128-132

A kinetics of formic acid anodic oxidation at electrodes consisting from composites of palladium with polyaniline is studied. It was found that the contact of palladium with polyaniline does not result in the electrocatalytic activity enhancement, that differs such composites from composites of palladium with polyelectrolytes.

Research of Efficiency Dependence of Thermoelectrochemicals of Electrolyte Concentration

The use of heat of low-temperature sources dissipated into the environment for the production of useful energy is an urgent scientific and technical task. The article discusses the electrochemical principle of collecting the heat of low potential sources (temperature less than 100°C) and converting it into electricity using a thermoelectrochemical cell based on complex salts of potassium ferri/ferrocyanide redox electrolyte. The efficiency of converting low-grade heat into useful energy in the studied cell type largely depends on the electrolyte concentration.

Изучение электрохимических свойств углеродных материалов для отрицательного электрода

Electrochemical characteristics of electrodes based on various carbon materials such as expanded graphite, nanotubes, black carbon for hybrid supercapacitors C/PbO2 with acid electrolyte were investigated. It was shown that the highest values of the capacitive characteristics were obtained using TUBALL graphene nanotubes (LLC OCSiAl.ru, Novosibirsk).