ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Karaseva E. V., Kuz'mina E. V., Shakirova N. V., Kolosnitsyn V. S. Effect of properties of carbon materials on specific energy and cycling of lithium-sulfur batteries. Electrochemical Energetics, 2022, vol. 22, iss. 4, pp. 181-193. DOI: 10.18500/1608-4039-2022-22-4-181-193, EDN: LBGSLS

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 94)
Language: 
Russian
Article type: 
Article
UDC: 
44.643.076.2:(546.34+546.22)
EDN: 
LBGSLS

Effect of properties of carbon materials on specific energy and cycling of lithium-sulfur batteries

Autors: 
Karaseva Elena Vladimirovna, Institute of Organic Chemistry of the Ufa RAS Scientific Center
Kuz'mina Elena Vladimirovna, Institute of Organic Chemistry of the Ufa RAS Scientific Center
Shakirova N. V., Institute of Organic Chemistry of the Ufa RAS Scientific Center
Kolosnitsyn Vladimir Sergeevich, Institute of Organic Chemistry of the Ufa RAS Scientific Center
Abstract: 

The effect of the structure and the specific surface area of carbon materials, contained in positive electrodes, on the peculiarities of cycling of lithium-sulfur cells (the depth of electrochemical reduction of sulfur and lithium polysulfides, the changes in capacity and Coulomb efficiency of cycling) was studied. The studies showed that the depth of electrochemical transformations of sulfur and lithium polysulfides depended not only on the specific surface area of the carbon material contained in positive electrodes, but also on the structure and the surface morphology of the carbon material particles.

Acknowledgments: 
The work was performed on the equipment of the Center for Collective Use “Chemistry”.
Reference: 
  1. Deng W., Phung J., Li G., Wang X. Realizing high-performance lithium-sulfur batteries via rational design and engineering strategies. Nano Energy, 2021, vol. 82, article no. 105761. https://doi.org/10.1016/j.nanoen.2021.105761
  2. Lopez C. V., Maladeniya C. P., Smith R. C. Lithium-Sulfur Batteries: Advances and Trends. Electrochem., 2020, vol. 1, pp. 226–259. https://doi.org/10.3390/electrochem1030016
  3. Dörfler S., Walus S., Locke J., Fotouhi A., Auger D. J., Shateri N., Abendroth T., Härtel P., Althues H., Kaskel S. Recent Progress and Emerging Application Areas for Lithium–Sulfur Battery Technology. Energy Technol., 2021, vol. 9, article no. 2000694. https://doi.org/10.1002/ente.202000694
  4. Chung S.-H., Manthiram A. Current Status and Future Prospects of Metal–Sulfur Batteries. Adv. Mater., 2019, vol. 31, article no. 1901125. https://doi.org/10.1002/adma.201901125
  5. Ely T. O., Kamzabek D., Chakraborty D., Doherty M. F. Lithium-Sulfur Batteries: State of the Art and Future Directions. ACS Appl. Energy Mater., 2018, vol. 1, no. 5, pp. 1783–1814. https://doi.org/10.1021/acsaem.7b00153
  6. Leonet O. Doñoro Á., Fernández-Barquı́n A., Kvasha A., Urdampilleta I., Blázquez J. A. Understanding of Crucial Factors for Improving the Energy Density of Lithium-Sulfur Pouch Cells. Front. Chem., 2022, vol. 10, article no. 888750. https://doi.org/10.3389/fchem.2022.888750
  7. Hannauer J., Scheers J., Fullenwarth J., Fraisse B., Stievano L., Johansson P. The Quest for Polysulfides in Lithium–Sulfur Battery Electrolytes: An Operando Confocal Raman Spectroscopy Study. ChemPhysChem, 2015, vol. 16, no. 13, pp. 2755–2759. https://doi.org/10.1002/cphc.201500448
  8. Harks P. P. R. M. L., Robledo C. B., Verhallen T. W., Notten P. H. L., Mulder F. M. The Significance of Elemental Sulfur Dissolution in Liquid Electrolyte Lithium Sulfur Batteries. Adv. Energy Mater., 2016, vol. 7, no. 3, article no. 1601635. https://doi.org/10.1002/aenm.201601635
  9. Rezan D.-C. Li-S Batteries: The Challenges, Chemistry, Materials, and Future Perspectives. 1st ed. World Scientific Publishing Europe Ltd, 2017. 372 p.
  10. Borchardt L., Oschatz M., Kaskel S. Carbon Materials for Lithium Sulfur Batteries – Ten Critical Questions. Chem. Eur. J., 2016, vol. 22, pp. 7324–7351. https://doi.org/10.1002/chem.201600040
  11. Zheng J., Lv D., Gu M., Wang C., Zhang J.-G., Liu J., Xiao J. How to Obtain Reproducible Results for Lithium Sulfur Batteries? J. Electrochem. Soc., 2013, vol. 160, no. 11, pp. A2288–A2292. https://doi.org/10.1149/2.106311jes
  12. Jozwiuk A., Sommer H., Janek J., Brezesinski T. Fair performance comparison of different carbon blacks in lithium-sulfur batteries with practical mass loadings – Simple design competes with complex cathode architecture. J. Power Sources, 2015, vol. 296, pp. 454–461. https://doi.org/10.1016/j.jpowsour.2015.07.070
  13. Jeong B. O., Kwon S. W., Kim T. J., Lee E. H., Jeong S. H., Jung Y. Effect of Carbon Black Materials on the Electrochemical Properties of Sulfur-Based Composite Cathode for Lithium-Sulfur Cells. Journal of Nanoscience and Nanotechnology, 2013, vol. 13, pp. 7870–7874. https://doi.org/10.1166/jnn.2013.8111
  14. Kumaresan K., Mikhaylik Yu., White R. E. A Mathematical Model for a Lithium-Sulfur Cell. J. Electrochem. Soc., 2008, vol. 155, no. 8, pp. A576–A582. https://doi.org/10.1149/1.2937304
  15. Wild M., O’Neill L., Zhang T., Purkayastha R., Minton G., Marinescu M., Offer G. J. Lithium Sulfur Batteries, A Mechanistic Review. Energy Environ. Sci., 2015, vol. 8, pp. 3477–3494. https://doi.org/10.1039/C5EE01388G
  16. Kolosnitsyn V. S., Kuzmina E. V., Karaseva E. V. On the reasons for low sulphur utilization in the lithium-sulphur batteries. J. Power Sources, 2015, vol. 274, pp. 203–210. https://doi.org/10.1016/j.jpowsour.2014.10.029
Received: 
01.12.2022
Accepted: 
12.12.2022
Published: 
23.12.2022