ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)

For citation:

Grigor’yeva V. A., Burashnikova M. M. Изучение электрохимических свойств углеродных материалов для отрицательного электрода. Electrochemical Energetics, 2021, vol. 21, iss. 3, pp. 132-150. DOI: 10.18500/1608-4039-2021-21-3-132-150, EDN: MZWEJF

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 75)
Article type: 

Изучение электрохимических свойств углеродных материалов для отрицательного электрода

Grigor’yeva Valeriya Aleksandrovna, Saratov State University
Burashnikova Marina Mikhailovna, Saratov State University

Electrochemical characteristics of electrodes based on various carbon materials such as expanded graphite, nanotubes, black carbon for hybrid supercapacitors C/PbO2 with acid electrolyte were investigated. It was shown that the highest values of the capacitive characteristics were obtained using TUBALL graphene nanotubes (LLC, Novosibirsk).


1. Vol’fkovich Y. M., Serdyuk T. M. Electrochemical capacitors. Russ. J. Electrochem., 2002, vol. 38, pp. 935–958.

2. Kёotz R., Carlen M. Principles and applications of electrochemical capacitor. Electrochim. Acta, 2000, vol. 45, pp. 2483–2498.

3. Zheng J. P. The limitations of energy density of battery and doublelayer capacitor asymmetric cells. J. Electrochem. Soc., 2003, vol. 150, pp. A484–A492.

4. Guillemet Ph., Pascot C., Scudeller Y. Electro-thermal analysis of Electric Double-Layer-Capacitors. Proc. 14th International Workshop on Thermal Investigation of ICs and Systems (THERMINIC). Rome, Italy, IEEE Publ., 2008, pp. 224–228.

5. Yang H., Kannappan S., Pandian A. S., Jang J. H., Lee Y. S., Lu W. Rapidly annealed nanoporous graphene materials for electrochemical energy storage. J. Mater. Chem. A, 2017, vol. 5, pp. 23720–23726.

6. Bo Z., Wen Z., Kim H., Lu G., Yu K., Chen J. One-step fabrication and capacitive behavior of electrochemical double layer capacitor electrodes using vertically-oriented graphene directly grown on metal. Carbon, 2012, vol. 50, pp. 4379–4387.

7. Singh A. P., Karandikar P. B., Tiwari N. K. Effect of electrode shape on the parameters of supercapacitor. IEEE, 2015, pp. 669–673.

8. Simon P., Burke A. Nanostructured carbons : Double-layer capacitance and more. Electrochem. Soc. Interface, 2008, vol. 17, no. 1, pp. 38–44.

9. Simon P., Gogotsi Y. Materials for electrochemical capacitors. Nat. Mater., 2008, vol. 7, no. 11, pp. 845–854.

10. Zhang L. L., Zhao X. S. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev., 2009, vol. 38, no. 9, pp. 2520–2531.

11. Jiang J., Zhang L., Wang X., Holm N., Rajagopalan K., Chen F., Chen F., Ma S. Highly ordered macroporous woody biochar with ultra-high carbon content as supercapacitor electrodes. Electrochim. Acta, 2013, vol. 113, pp. 481–489.

12. Thambidurai A., Lourdusamy J. K., John J. V., Ganesan S. Preparation and electrochemical behavior of biomass based porous carbons as electrodes for supercapacitors : A comparative investigation. Kor. J. Chem. Eng., 2014, vol. 31, no. 2, pp. 268–275.

13. Liang C., Li Z., Dai S. Mesoporous carbon materials : Synthesis and modification. Angew. Chem. Int. Ed., 2008, vol. 47, no. 20, pp. 3696–3717.

14. Saha D., Li Y., Bi Z., Chen J., Keum J. K., Hensley D. K., Grappe H. A., Meyer H. M. 3rd, Dai S., Paranthaman M. P., Naskar A. K. Studies on supercapacitor electrode material from activated lignin-derived mesoporous carbon. Langmuir ACS J. Surf. Colloids, 2014, vol. 30, no. 3, pp. 900–910.

15. Kumagai S., Sato M., Tashima D. Electrical double-layer capacitance of micro- and meso-porous activated carbon prepared from rice husk and beet sugar. Electrochim. Acta, 2013, vol. 114, pp. 617–626.

16. Ersoy D. A., McNallan M. J., Gogotsi Y. Carbon coatings produced by high temperature chlorination of silicon carbide ceramics. Mater. Res. Innov., 2001, vol. 5, no. 2, pp. 55–62.

17. Gogotsi Y. G., Jeon I.-D., McNallan M. J. Carbon coatings on silicon carbide by reaction with chlorine containing gases. J. Mater. Chem., 1997, vol. 7, no. 9, pp. 1841–1848.

18. Cambaz Z. G., Yushin G. N., Gogotsi Y., Vyshnyakova K. L., Pereselentseva L. N. Formation of carbide derived carbon on ?-silicon carbide whiskers. Am. Ceram. Soc., 2006, vol. 89, no. 2, pp. 509–514.

19. Beguin F., Presser V., Balducci A., Frackowiak E. Carbons and electrolytes for advanced supercapacitors. Advanced Materials, 2014, vol. 26, no. 14, pp. 2219–2251.

20. Liu H. J., Wang J., Wang C. X., Xia Y. Y. Ordered Hierarchical Mesoporous / Microporous Carbon Derived from Mesoporous Titanium–Carbide/Carbon Composites and its Electrochemical Performance in Supercapacitor. Advanced Energy Materials, 2011, vol. 1, no. 6, pp. 1101–1108. https://doi.org10.1002/aenm.201100255

21. Presser V., Zhang L., Niu J. J., McDonough J., Perez C., Fong H., Gogotsi Y. Flexible Nano-felts of Carbide-Derived Carbon with Ultra-high Power Handling Capability. Advanced Energy Materials, 2011, vol. 1, no. 3, pp. 423–430. https://doi.org10.1002/aenm.201100047

22. Perez C. R., Yeon S. H., Segalini J., Presser V., Taberna P.-L., Simon P., Gogotsi Y. Structure and Electrochemical Performance of Carbide-Derived Carbon Nanopowders. Advanced Functional Materials, 2013, vol. 23, no. 8, pp. 1081–1089. https://doi.org10.1002/adfm.201200695

23. Gao Y., Presser V., Zhang L., Niu J. J., McDonough J. K., Perez R. C., Lin H., Fong H., Gogotsi Y. High power supercapacitor electrodes based on flexible TiC–CDC nano-felts. J. Power Sources, 2012, vol. 201, pp. 368–375.

24. Heon M., Lofland S., Applegate J., Nolte R., Cortes E., Hettinger J. D., Taberna P.-L., Simon P., Huang P., Brunet M., Gogotsi Y. Continuous carbide-derived carbon films with high volumetric capacitance. Energy & Environmental Science, 2011, vol. 4, no. 1, pp. 135–138.

25. Gogotsi Y., Nikitin A., Ye H., Zhou W., Fischer J. E., Yi B., Zhou W., Fischer J. E., Yi B., Foley H. C., Barsoum M. W. Nanoporous carbide derived carbon with tunable pore size. Nat. Mater., 2003, vol. 2, no. 9, pp. 591–594.

26. Yushin G., Nikitin A., Gogotsi Y. Carbide derived carbon. In: Y. Gogotsi, ed. Nanomaterials Handbook. Boca Raton, FL, CRC Press, 2006, pp. 237–280.

27. Dash R., Chmiola J., Yushin G., Gogotsi Y., Laudisio G., Singer J., Fischer J. E., Kucheyev S. Titanium carbide derived nanoporous carbon for energy related applications. Carbon, 2006, vol. 44, no. 12, pp. 2489–2497.

28. Kravchik A. E., Kukushkina J. A., Sokolov V. V., Tereshchenko G. F. Structure of nanoporous carbon produced from boron carbide. Carbon, 2006, vol. 44, no. 15, pp. 3263–3268.

29. Erdemir A., Kovalchenko A., McNallan M. J., Welz S., Lee A., Gogotsi Y., Carroll B. Effects of high-temperature hydrogenation treatment on sliding friction and wear behavior of carbide derived carbon films. Surf. Coat. Technol., 2004, vol. 188–189, no. 1–3, special issue, pp. 588–593. https://doi.org10.1016/j.surfcoat.2004.07.052

30. Permann L., Latt M., Leis J., Arulepp M. Electrical double layer characteristics of nanoporous carbon derived from titanium carbide. Electrochim. Acta, 2006, vol. 51, no. 7, pp. 1274–1281.

31. Chmiola J., Yushin G., Dash R., Gogotsi Y. Effect of pore size and surface area of carbide derived carbons on specific capacitance. J. Power Sources, 2006, vol. 158, no. 1, pp. 765–772.

32. Taberna P. L., Simon P., Fauvarque J. F. Electrochemical characteristics and impedance spectroscopy studies of carbon–carbon supercapacitors. J. Electrochem. Soc., 2003, vol. 150, no. 3, pp. A292–A300.

33. Yang Z., Ren J., Zhang Z., Xuli Chen, Guozhen Guan, Longbin Qiu, Ye Zhang, Huisheng Peng. Recent advancement of nanostructured carbon for energy applications. Chem. Rev., 2015, vol. 115, pp. 5159–5223.

34. Wang G., Liang R., Liu L., Zhong B. Improving the specific capacitance of carbon nanotubes-based supercapacitors by combining introducing functional groups on carbon nanotubes with using redox-active electrolyte. Electrochim. Acta, 2014, vol. 115, pp. 183–188.

35. Bai X., Hu X., Zhou S., Yan J., Sun C., Chen P., Li L. In situ polymerization and characterization of grafted poly (3,4-ethylenedioxythiophene)/multiwalled carbon nanotubes composite with high electrochemical performances. Electrochim. Acta, 2013, vol. 87, pp. 394–400.

36. Yang M., Cheng B., Song H., Chen X. Preparation and electrochemical performance of polyaniline-based carbon nanotubes as electrode material for supercapacitor. Electrochim. Acta, 2010, vol. 55, pp. 7021–7027.

37. Hahn M., Baertschi M., Barbieri O., Sauter J.C., Kotz R., Gallayb R. Interfacial capacitance and electronic conductance of activated carbon double-layer electrodes. Electrochem. Solid-State Lett., 2004, vol. 7, pp. A33–A36.

38. Izadi-Najafabadi A., Yasuda S., Kobashi K., Yamada T., Futaba D. N., Hatori H., Yumura M., Iijima S., Hata K. Extracting the full potential of single-walled carbon nanotubes as durable supercapacitor electrodes operable at 4 V with high power and energy density. Adv. Mater., 2010, vol. 22, pp. E235–E241.

39. Xiang L. L., Jing T., Xin G. Preparation and supercapacitor performance of nitrogen-doped carbon nanotubes from polyaniline modification. Acta Phys. Chim. Sin., 2013, vol. 29, no. 1, pp. 111–116.

40. Gueon D., Moon J. H. Nitrogen-doped carbon nanotube spherical particles for supercapacitor applications : Emulsion-assisted compact packing and capacitance enhancement. ACS Appl. Mater. Interfaces, 2015, vol. 7, pp. 20083–20089.

41. Frackowiak E., Metenier K., Bertagna V. Supercapacitor electrodes from multiwalled carbon nanotubes. Appl. Phys. Lett., 2000, vol. 77, pp. 2421–2423.

42. Stoller M. D., Park S., Zhu Y., An J., Ruoff R. S. Graphene-based ultracapacitors. Nano Lett., 2008, vol. 8, pp. 3498–3502.

43. Du X., Guo P., Song H., Chen X. Graphene nanosheets as electrode material for electric double-layer capacitors. Electrochim. Acta, 2010, vol. 55, pp. 4812–4819.

44. Lv W., Tang D. M., He Y. B., You C.-H., Shi Z.Q., Chen X. C., Chen C.-M., Hou P.-X., Liu C., Yang Q.-H. Low-temperature exfoliated graphenes : Vacuum-promoted exfoliation and electrochemical energy storage. ACS Nano, 2009, vol. 3, pp. 3730–3736.

45. Xu Y., Lin Z., Zhong X., Huang X., Weiss N. O., Huang Y., Duan X. Holey graphene frameworks for highly efficient capacitive energy storage. Nat. Commun., 2014, vol. 5, article no. 4554.

46. Zhu Y., Murali S., Stoller M. D., Ganesh K. J., Cai W., Ferreira P. J., Pirkle A., Wallace R. M., Cychosz K. A., Thommes M., Su D., Stach E. A., Ruoff R. S. Carbon-based supercapacitors produced by activation of grapheme. Science, 2011, vol. 332, iss. 6037, pp. 1537–1541.

47. Kim T., Jung G., Yoo S., Suh K. S., Ruoff R. S. Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores. ACS Nano, 2017, vol. 7, pp. 6899–6905.

48. Liu Y., Shen Y., Sun L. C. Elemental superdoping of graphene and carbon nanotubes. Nat. Commun., 2016, vol. 7, article no. 10921.

49. Jeong H. M., Lee J. W., Shin W. H., Choi Y. J., Shin H. J., Kang J. K., Choi J. W. Nitrogen-doped graphene for high performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett., 2011, vol. 11, pp. 2472–2477.

50. Zhao Y., Hu C., Hu Y., Cheng H., Shi G. A versatile, ultralight, nitrogen-doped graphene framework. Angew. Chem. Int. Ed., 2012, vol. 51, pp. 11371–11375.

51. Han J., Zhang L. L., Lee S., Oh J., Lee K.S., Potts J. R., Ji J., Zhao X., Ruoff R. S., Park S. Generation of B-doped graphene nanoplatelets using a solution process and their supercapacitor applications. ACS Nano, 2012, vol. 7, pp. 19–26.

52. Wang C., Zhou Y., Sun L., Zhao Q., Zhang X., Wan P., Qiu J. N/P-codoped thermally reduced graphene for high-performance supercapacitor applications. J. Phys. Chem. C, 2013, vol. 117, pp. 14912–14919.

53. Ke Q., Wang J. Graphene-based materials for supercapacitor electrodes : A review. J. Mater., 2016, vol. 2, pp. 37–54.

54. Ma Y., Chen Y. Three-dimensional graphene networks : Synthesis, properties and applications. Nat. Sci. Rev., 2015, vol. 2, pp. 40–53.

55. Zhao Z., Wang Z., Qiu J., Lin J., Xu D., Zhang C., Lv M., Yang X. Three dimensional graphene-based hydrogel/aerogel materials. Rev. Adv. Mater. Sci., 2014, vol. 36, pp. 137–151.

56. Chen Y., Zhang X., Zhang D., Yu P., Ma Y. High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes. Carbon, 2011, vol. 49, pp. 573–580.

57. Zhang L., Shi G. Preparation of highly conductive graphene hydrogels for fabricating supercapacitors with high rate capability. J. Phys. Chem. C, 2011, vol. 115, pp. 17206–17212.

58. Jin Y., Huang S., Zhang M., Jia M., Hu D. A green and efficient method to produce graphene for electrochemical capacitors from graphene oxide using sodium carbonate as a reducing agent. Appl. Surf. Sci., 2011, vol. 268, pp. 541–546.

59. Zhang L. L., Zhao X., Stoller M. D., Zhu Y., Ji H., Murali S., Wu Y., Perales S., Clevenger B., Ruoff R. S. Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors. Nano Lett., 2012, vol. 12, pp. 1806–1812.

60. Jung S. M., Mafra D. L., Lin C. T., Jung H. Y., Kong J. Controlled porous structures of graphene aerogels and their effect on supercapacitor performance. Nanoscale, 2015, vol. 7, pp. 4386–4393.

61. Zhu C., Liu T., Qian F., Han T. Y.J., Duoss E. B., Kuntz J. D., Spadaccini C. M., Worsley M. A., Li Y. Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Lett., 2016, vol. 16, pp. 3448–3456.