ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Grigor’yeva V. A., Burashnikova M. M. Изучение электрохимических свойств углеродных материалов для отрицательного электрода. Electrochemical Energetics, 2021, vol. 21, iss. 3, pp. 132-150. DOI: 10.18500/1608-4039-2021-21-3-132-150, EDN: MZWEJF

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 117)
Language: 
Russian
Heading: 
Article type: 
Article
EDN: 
MZWEJF

Изучение электрохимических свойств углеродных материалов для отрицательного электрода

Autors: 
Grigor’yeva Valeriya Aleksandrovna, Saratov State University
Burashnikova Marina Mikhailovna, Saratov State University
Abstract: 

Electrochemical characteristics of electrodes based on various carbon materials such as expanded graphite, nanotubes, black carbon for hybrid supercapacitors C/PbO2 with acid electrolyte were investigated. It was shown that the highest values of the capacitive characteristics were obtained using TUBALL graphene nanotubes (LLC OCSiAl.ru, Novosibirsk).

Reference: 

1. Vol’fkovich Y. M., Serdyuk T. M. Electrochemical capacitors. Russ. J. Electrochem., 2002, vol. 38, pp. 935–958.

2. Kёotz R., Carlen M. Principles and applications of electrochemical capacitor. Electrochim. Acta, 2000, vol. 45, pp. 2483–2498. https://doi.org/10.1016/S0013-4686(00)00345-6

3. Zheng J. P. The limitations of energy density of battery and doublelayer capacitor asymmetric cells. J. Electrochem. Soc., 2003, vol. 150, pp. A484–A492. https://doi.org/10.1149/1.1559067

4. Guillemet Ph., Pascot C., Scudeller Y. Electro-thermal analysis of Electric Double-Layer-Capacitors. Proc. 14th International Workshop on Thermal Investigation of ICs and Systems (THERMINIC). Rome, Italy, IEEE Publ., 2008, pp. 224–228.

5. Yang H., Kannappan S., Pandian A. S., Jang J. H., Lee Y. S., Lu W. Rapidly annealed nanoporous graphene materials for electrochemical energy storage. J. Mater. Chem. A, 2017, vol. 5, pp. 23720–23726. https://doi.org/10.1039/C7TA07733E

6. Bo Z., Wen Z., Kim H., Lu G., Yu K., Chen J. One-step fabrication and capacitive behavior of electrochemical double layer capacitor electrodes using vertically-oriented graphene directly grown on metal. Carbon, 2012, vol. 50, pp. 4379–4387. https://doi.org/10.1016/j.carbon.2012.05.014

7. Singh A. P., Karandikar P. B., Tiwari N. K. Effect of electrode shape on the parameters of supercapacitor. IEEE, 2015, pp. 669–673. https://doi.org/10.1109/IIC.2015.7150826

8. Simon P., Burke A. Nanostructured carbons : Double-layer capacitance and more. Electrochem. Soc. Interface, 2008, vol. 17, no. 1, pp. 38–44.

9. Simon P., Gogotsi Y. Materials for electrochemical capacitors. Nat. Mater., 2008, vol. 7, no. 11, pp. 845–854. https://doi.org/10.1142/9789814287005_0033

10. Zhang L. L., Zhao X. S. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev., 2009, vol. 38, no. 9, pp. 2520–2531. https://doi.org/10.1039/B813846J

11. Jiang J., Zhang L., Wang X., Holm N., Rajagopalan K., Chen F., Chen F., Ma S. Highly ordered macroporous woody biochar with ultra-high carbon content as supercapacitor electrodes. Electrochim. Acta, 2013, vol. 113, pp. 481–489. https://doi.org/10.1016/j.electacta.2013.09.121

12. Thambidurai A., Lourdusamy J. K., John J. V., Ganesan S. Preparation and electrochemical behavior of biomass based porous carbons as electrodes for supercapacitors : A comparative investigation. Kor. J. Chem. Eng., 2014, vol. 31, no. 2, pp. 268–275. https://doi.org/10.1007/s11814-013-0228-z

13. Liang C., Li Z., Dai S. Mesoporous carbon materials : Synthesis and modification. Angew. Chem. Int. Ed., 2008, vol. 47, no. 20, pp. 3696–3717. https://doi.org/10.1002/anie.200702046

14. Saha D., Li Y., Bi Z., Chen J., Keum J. K., Hensley D. K., Grappe H. A., Meyer H. M. 3rd, Dai S., Paranthaman M. P., Naskar A. K. Studies on supercapacitor electrode material from activated lignin-derived mesoporous carbon. Langmuir ACS J. Surf. Colloids, 2014, vol. 30, no. 3, pp. 900–910. https://doi.org/10.1021/la404112m

15. Kumagai S., Sato M., Tashima D. Electrical double-layer capacitance of micro- and meso-porous activated carbon prepared from rice husk and beet sugar. Electrochim. Acta, 2013, vol. 114, pp. 617–626. https://doi.org/10.1016/j.electacta.2013.10.060

16. Ersoy D. A., McNallan M. J., Gogotsi Y. Carbon coatings produced by high temperature chlorination of silicon carbide ceramics. Mater. Res. Innov., 2001, vol. 5, no. 2, pp. 55–62. https://doi.org/10.1007/s100190100136

17. Gogotsi Y. G., Jeon I.-D., McNallan M. J. Carbon coatings on silicon carbide by reaction with chlorine containing gases. J. Mater. Chem., 1997, vol. 7, no. 9, pp. 1841–1848. https://doi.org/10.1039/A701126A

18. Cambaz Z. G., Yushin G. N., Gogotsi Y., Vyshnyakova K. L., Pereselentseva L. N. Formation of carbide derived carbon on ?-silicon carbide whiskers. Am. Ceram. Soc., 2006, vol. 89, no. 2, pp. 509–514. https://doi.org/10.1111/j.1551-2916.2005.00780.x

19. Beguin F., Presser V., Balducci A., Frackowiak E. Carbons and electrolytes for advanced supercapacitors. Advanced Materials, 2014, vol. 26, no. 14, pp. 2219–2251. https://doi.org/10.1002/adma.201304137

20. Liu H. J., Wang J., Wang C. X., Xia Y. Y. Ordered Hierarchical Mesoporous / Microporous Carbon Derived from Mesoporous Titanium–Carbide/Carbon Composites and its Electrochemical Performance in Supercapacitor. Advanced Energy Materials, 2011, vol. 1, no. 6, pp. 1101–1108. https://doi.org10.1002/aenm.201100255

21. Presser V., Zhang L., Niu J. J., McDonough J., Perez C., Fong H., Gogotsi Y. Flexible Nano-felts of Carbide-Derived Carbon with Ultra-high Power Handling Capability. Advanced Energy Materials, 2011, vol. 1, no. 3, pp. 423–430. https://doi.org10.1002/aenm.201100047

22. Perez C. R., Yeon S. H., Segalini J., Presser V., Taberna P.-L., Simon P., Gogotsi Y. Structure and Electrochemical Performance of Carbide-Derived Carbon Nanopowders. Advanced Functional Materials, 2013, vol. 23, no. 8, pp. 1081–1089. https://doi.org10.1002/adfm.201200695

23. Gao Y., Presser V., Zhang L., Niu J. J., McDonough J. K., Perez R. C., Lin H., Fong H., Gogotsi Y. High power supercapacitor electrodes based on flexible TiC–CDC nano-felts. J. Power Sources, 2012, vol. 201, pp. 368–375. https://doi.org/10.1016/j.jpowsour.2011.10.128

24. Heon M., Lofland S., Applegate J., Nolte R., Cortes E., Hettinger J. D., Taberna P.-L., Simon P., Huang P., Brunet M., Gogotsi Y. Continuous carbide-derived carbon films with high volumetric capacitance. Energy & Environmental Science, 2011, vol. 4, no. 1, pp. 135–138. https://doi.org/10.1039/C0EE00404A

25. Gogotsi Y., Nikitin A., Ye H., Zhou W., Fischer J. E., Yi B., Zhou W., Fischer J. E., Yi B., Foley H. C., Barsoum M. W. Nanoporous carbide derived carbon with tunable pore size. Nat. Mater., 2003, vol. 2, no. 9, pp. 591–594. https://doi.org/10.1038/nmat957

26. Yushin G., Nikitin A., Gogotsi Y. Carbide derived carbon. In: Y. Gogotsi, ed. Nanomaterials Handbook. Boca Raton, FL, CRC Press, 2006, pp. 237–280.

27. Dash R., Chmiola J., Yushin G., Gogotsi Y., Laudisio G., Singer J., Fischer J. E., Kucheyev S. Titanium carbide derived nanoporous carbon for energy related applications. Carbon, 2006, vol. 44, no. 12, pp. 2489–2497. https://doi.org/10.1016/j.carbon.2006.04.035

28. Kravchik A. E., Kukushkina J. A., Sokolov V. V., Tereshchenko G. F. Structure of nanoporous carbon produced from boron carbide. Carbon, 2006, vol. 44, no. 15, pp. 3263–3268. https://doi.org/10.1016/j.carbon.2006.06.037

29. Erdemir A., Kovalchenko A., McNallan M. J., Welz S., Lee A., Gogotsi Y., Carroll B. Effects of high-temperature hydrogenation treatment on sliding friction and wear behavior of carbide derived carbon films. Surf. Coat. Technol., 2004, vol. 188–189, no. 1–3, special issue, pp. 588–593. https://doi.org10.1016/j.surfcoat.2004.07.052

30. Permann L., Latt M., Leis J., Arulepp M. Electrical double layer characteristics of nanoporous carbon derived from titanium carbide. Electrochim. Acta, 2006, vol. 51, no. 7, pp. 1274–1281. https://doi.org/10.1016/j.electacta.2005.06.024

31. Chmiola J., Yushin G., Dash R., Gogotsi Y. Effect of pore size and surface area of carbide derived carbons on specific capacitance. J. Power Sources, 2006, vol. 158, no. 1, pp. 765–772. https://doi.org/10.1016/j.jpowsour.2005.09.008

32. Taberna P. L., Simon P., Fauvarque J. F. Electrochemical characteristics and impedance spectroscopy studies of carbon–carbon supercapacitors. J. Electrochem. Soc., 2003, vol. 150, no. 3, pp. A292–A300. https://doi.org/10.1149/1.1543948

33. Yang Z., Ren J., Zhang Z., Xuli Chen, Guozhen Guan, Longbin Qiu, Ye Zhang, Huisheng Peng. Recent advancement of nanostructured carbon for energy applications. Chem. Rev., 2015, vol. 115, pp. 5159–5223. https://doi.org/10.1021/cr5006217

34. Wang G., Liang R., Liu L., Zhong B. Improving the specific capacitance of carbon nanotubes-based supercapacitors by combining introducing functional groups on carbon nanotubes with using redox-active electrolyte. Electrochim. Acta, 2014, vol. 115, pp. 183–188. https://doi.org/10.1016/j.electacta.2013.10.165

35. Bai X., Hu X., Zhou S., Yan J., Sun C., Chen P., Li L. In situ polymerization and characterization of grafted poly (3,4-ethylenedioxythiophene)/multiwalled carbon nanotubes composite with high electrochemical performances. Electrochim. Acta, 2013, vol. 87, pp. 394–400. https://doi.org/10.1016/j.electacta.2012.09.079

36. Yang M., Cheng B., Song H., Chen X. Preparation and electrochemical performance of polyaniline-based carbon nanotubes as electrode material for supercapacitor. Electrochim. Acta, 2010, vol. 55, pp. 7021–7027. https://doi.org/10.1016/j.electacta.2010.06.077

37. Hahn M., Baertschi M., Barbieri O., Sauter J.C., Kotz R., Gallayb R. Interfacial capacitance and electronic conductance of activated carbon double-layer electrodes. Electrochem. Solid-State Lett., 2004, vol. 7, pp. A33–A36. https://doi.org/10.1149/1.1635671

38. Izadi-Najafabadi A., Yasuda S., Kobashi K., Yamada T., Futaba D. N., Hatori H., Yumura M., Iijima S., Hata K. Extracting the full potential of single-walled carbon nanotubes as durable supercapacitor electrodes operable at 4 V with high power and energy density. Adv. Mater., 2010, vol. 22, pp. E235–E241. https://doi.org/10.1002/adma.200904349

39. Xiang L. L., Jing T., Xin G. Preparation and supercapacitor performance of nitrogen-doped carbon nanotubes from polyaniline modification. Acta Phys. Chim. Sin., 2013, vol. 29, no. 1, pp. 111–116. https://doi.org/10.3866/PKU.WHXB201211091

40. Gueon D., Moon J. H. Nitrogen-doped carbon nanotube spherical particles for supercapacitor applications : Emulsion-assisted compact packing and capacitance enhancement. ACS Appl. Mater. Interfaces, 2015, vol. 7, pp. 20083–20089. https://doi.org/10.1021/acsami.5b05231

41. Frackowiak E., Metenier K., Bertagna V. Supercapacitor electrodes from multiwalled carbon nanotubes. Appl. Phys. Lett., 2000, vol. 77, pp. 2421–2423. https://doi.org/10.1063/1.1290146

42. Stoller M. D., Park S., Zhu Y., An J., Ruoff R. S. Graphene-based ultracapacitors. Nano Lett., 2008, vol. 8, pp. 3498–3502. https://doi.org/10.1021/nl802558y

43. Du X., Guo P., Song H., Chen X. Graphene nanosheets as electrode material for electric double-layer capacitors. Electrochim. Acta, 2010, vol. 55, pp. 4812–4819. https://doi.org/10.1016/j.electacta.2010.03.047

44. Lv W., Tang D. M., He Y. B., You C.-H., Shi Z.Q., Chen X. C., Chen C.-M., Hou P.-X., Liu C., Yang Q.-H. Low-temperature exfoliated graphenes : Vacuum-promoted exfoliation and electrochemical energy storage. ACS Nano, 2009, vol. 3, pp. 3730–3736. https://doi.org/10.1021/nn900933u

45. Xu Y., Lin Z., Zhong X., Huang X., Weiss N. O., Huang Y., Duan X. Holey graphene frameworks for highly efficient capacitive energy storage. Nat. Commun., 2014, vol. 5, article no. 4554. https://doi.org/10.1038/ncomms5554

46. Zhu Y., Murali S., Stoller M. D., Ganesh K. J., Cai W., Ferreira P. J., Pirkle A., Wallace R. M., Cychosz K. A., Thommes M., Su D., Stach E. A., Ruoff R. S. Carbon-based supercapacitors produced by activation of grapheme. Science, 2011, vol. 332, iss. 6037, pp. 1537–1541. https://doi.org/10.1126/science.1200770

47. Kim T., Jung G., Yoo S., Suh K. S., Ruoff R. S. Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores. ACS Nano, 2017, vol. 7, pp. 6899–6905. https://doi.org/10.1021/nn402077v

48. Liu Y., Shen Y., Sun L. C. Elemental superdoping of graphene and carbon nanotubes. Nat. Commun., 2016, vol. 7, article no. 10921. https://doi.org/10.1038/ncomms10921

49. Jeong H. M., Lee J. W., Shin W. H., Choi Y. J., Shin H. J., Kang J. K., Choi J. W. Nitrogen-doped graphene for high performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett., 2011, vol. 11, pp. 2472–2477. https://doi.org/10.1021/nl2009058

50. Zhao Y., Hu C., Hu Y., Cheng H., Shi G. A versatile, ultralight, nitrogen-doped graphene framework. Angew. Chem. Int. Ed., 2012, vol. 51, pp. 11371–11375. https://doi.org/10.1002/anie.201206554

51. Han J., Zhang L. L., Lee S., Oh J., Lee K.S., Potts J. R., Ji J., Zhao X., Ruoff R. S., Park S. Generation of B-doped graphene nanoplatelets using a solution process and their supercapacitor applications. ACS Nano, 2012, vol. 7, pp. 19–26. https://doi.org/10.1021/nn3034309

52. Wang C., Zhou Y., Sun L., Zhao Q., Zhang X., Wan P., Qiu J. N/P-codoped thermally reduced graphene for high-performance supercapacitor applications. J. Phys. Chem. C, 2013, vol. 117, pp. 14912–14919. https://doi.org/10.1021/jp4015959

53. Ke Q., Wang J. Graphene-based materials for supercapacitor electrodes : A review. J. Mater., 2016, vol. 2, pp. 37–54. https://doi.org/10.1016/j.jmat.2016.01.001

54. Ma Y., Chen Y. Three-dimensional graphene networks : Synthesis, properties and applications. Nat. Sci. Rev., 2015, vol. 2, pp. 40–53. https://doi.org/10.1093/nsr/nwu072

55. Zhao Z., Wang Z., Qiu J., Lin J., Xu D., Zhang C., Lv M., Yang X. Three dimensional graphene-based hydrogel/aerogel materials. Rev. Adv. Mater. Sci., 2014, vol. 36, pp. 137–151. https://doi.org/10.1039/C3TA10989E

56. Chen Y., Zhang X., Zhang D., Yu P., Ma Y. High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes. Carbon, 2011, vol. 49, pp. 573–580. https://doi.org/10.1016/j.carbon.2010.09.060

57. Zhang L., Shi G. Preparation of highly conductive graphene hydrogels for fabricating supercapacitors with high rate capability. J. Phys. Chem. C, 2011, vol. 115, pp. 17206–17212. https://doi.org/10.1021/jp204036a

58. Jin Y., Huang S., Zhang M., Jia M., Hu D. A green and efficient method to produce graphene for electrochemical capacitors from graphene oxide using sodium carbonate as a reducing agent. Appl. Surf. Sci., 2011, vol. 268, pp. 541–546. https://doi.org/10.1016/j.apsusc.2013.01.004

59. Zhang L. L., Zhao X., Stoller M. D., Zhu Y., Ji H., Murali S., Wu Y., Perales S., Clevenger B., Ruoff R. S. Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors. Nano Lett., 2012, vol. 12, pp. 1806–1812. https://doi.org/10.1021/nl203903z

60. Jung S. M., Mafra D. L., Lin C. T., Jung H. Y., Kong J. Controlled porous structures of graphene aerogels and their effect on supercapacitor performance. Nanoscale, 2015, vol. 7, pp. 4386–4393. https://doi.org/10.1039/C4NR07564A

61. Zhu C., Liu T., Qian F., Han T. Y.J., Duoss E. B., Kuntz J. D., Spadaccini C. M., Worsley M. A., Li Y. Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Lett., 2016, vol. 16, pp. 3448–3456. https://doi.org/10.1021/acs.nanolett.5b04965

Received: 
30.06.2021
Accepted: 
07.08.2021
Published: 
24.09.2021