ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Chaika M. Y., Agupov V. V., Gorshkov V. S., Glotov A. V., Ermakov A. N., Kravchenko T. A. The cjncentration effects of the conductive fillers in the carbon-carbon electrodes of the electrochemical capacitor. Electrochemical Energetics, 2012, vol. 12, iss. 2, pp. 72-76. DOI: 10.18500/1608-4039-2012-12-2-72-76, EDN: PEVNLP

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 120)
Language: 
Russian
Heading: 
Article type: 
Article
EDN: 
PEVNLP

The cjncentration effects of the conductive fillers in the carbon-carbon electrodes of the electrochemical capacitor

Autors: 
Chaika Mikhail Yur'evich, ООО “Global SO”
Glotov Anton Valer'evich, JSC VSKB Rikon
Ermakov Aleksandr Nikolaevich, Voronezh State University
Kravchenko Tamara Aleksandrovna, Voronezh State University
Abstract: 

Recent experimental results on the electrical and electrochemical properties of carbon-carbon electrodes of electrochemical capacitors (supercapacitors) are discussed. The dependence of electronic conductivity, specific capacity and the equivalent series resistance on the concentration and nature of the conductive filler is revealed: carbon black PA-76, carbon fibers VGCF grown in vacuum. It is established that the capacity of the electrical double layer formed on the high extended surface area of carbon-carbon electrode material of electrochemical capacitor obtain a maximum value of 115 F/g at a concentration of conductive filler 15%. The equivalent series resistance does not depend on the concentration and nature of the conductive filler and electrical contact is defined on the boundary of the electrode material/current collector.

Reference: 

1. Pcmdolfo A. С., Hollenkamp А. К // J. Power Sources. 2006. Vol. 157. Р. 11–27.
2. Вольфкович Ю. М. Сердюк Т. М. // Электрохим. энергетика. 2001. Т. 1. № 4. С. 14–28.
3. Stoller М. D., Park S., Zhu Y., An J., Ruoff R. S. // Nano Letters. 2008. Vol. 8. № 10. Р. 3498–3502.
4. McEnaney В., Burchell Т. D. Carbon Materials for Advanced Technologies. Pergamon, 1999. P. 1.
5. Pierson PI. O. Handbook of Carbon, Graphite, Diamond and Fullerenes. NJ, USA: Noyes Publications, 1993.
6. Burke A., Arulepp M. // Proceedings of the Symposium on Batteries and Supercapacitors. San Francisco, CA, 2001. P. 576.
7. Pekala R. W., Farmer J. C., Alvisio С. I, Tran T. D., Mayer S. T. Miller J. M. Dunn B. // J. of Non-Crystalline Solids. 1998. Vol. 225. P. 74–80.
8. Saliger R., Fisher U., Herta C., Fricke J. // J. of Non-Crystalline Solids. 1998. Vol. 225. P. 81–85.
9. Wang Y., Shi Z., Huang Y., Ma Y., Wang C., Chen M. Chen Y. // J. of Physical Chemistry C. 2009. Vol. 113. P. 13103–13107.
10. Biswas S., Drzal L. T. // Applied Materials & Interfaces. 2010. Vol. 2. № 8. P. 2293–2300.
11. Vivekchand S. R., Rout C. S., Subrahmanyam K. S., Govindaraj A., Rao C. N. R. // J. of Chemical Sciences. 2008. Vol. 120, № 1. P. 9–13.
12. Morimoto T. Hiratsuka K., Sanada Y. Kurihara K. // J. of Power Sources. 1996. Vol. 60. P. 239.
13. Hsieh C.-T. Teng H. // Carbon. 2002. Vol. 40. P. 667.
14. Morimoto T. Hiratsuka K., Sanada T, Kurihara K., Jimbo T. // Proc. of the 183rd Meeting of the Electrochemical Society. Honolulu. Hawaii. 1993. Vol. 93–23. P. 49.
15. Kotz R., Cartlen M. // Electrochim. Acta. 2000. Vol. 45. P. 2483–2498.

Received: 
30.06.2012
Accepted: 
30.07.2012
Published: 
30.07.2012