For citation:
Rychagov A. Y., Vol'fkovich Y. M., Vorotyntsev M. A., Kvacheva L. D., Konev D. V., Krestinin A. V., Kryazhev Y. G., Kuznetsov V. L., Kukushkina Y. A., Mukhin V. M., Sokolov V. V., Chervonobrodov S. P. Perspective Electrode Materials for Super-capacitors. Electrochemical Energetics, 2012, vol. 12, iss. 4, pp. 167-180. DOI: 10.18500/1608-4039-2012-12-4-167-180, EDN: RDNCXL
Perspective Electrode Materials for Super-capacitors
In this review electrochemical and structural data for the electrodes made of certain of perspective materials for supercapacitors are considered. These electrodes were made on the basis of high-dispersed carbon materials. The following materials were used: singlelayer and multilayer carbon nanotubes; reduced oxide of graphene; the carbide type activated carbon; polyacrilonitrile fibers treated by carbonization and activation; the activated carbon fibrous material; the activated carbon cloth; a composite of polyporphirine on carbon black; polyporhine of magnesium, electrodeposited on carbon paper; and a polyaniline composite with the singlelayer nanotubes, electrodeposited on carbon paper. The short review of techniques of synthesis of these electrode materials is presented. Comparison of capactance characteristics of these electrodes for the purpose of the recommendation of their use in certain types of electrochemical supercapacitors is carried out.
1. Conway В. Е. Electrochemical supercapacitors. New York: Kluwer Academic; Plenum Publishers, 1999. 698 p.
2. Вольфкович Ю. M., Сердюк T. M. // Электрохимия. 2002. T. 38, № 9. C. 1043–1068.
3. Barsukov I. V, Johnson C., Doninger E., Barsukov V. Z. New Carbon Based Materials for Electrochemical Energy Storage Sys-tems: Batteries, Supercapacitors and Fuel Cells (NATO Science Series II: Mathematics, Physics and Chemistry). New York: Springer, 2006. 297 p.
4. Burke A. // J. Power Sources 2000. Vol. 91. P. 37–50.
5. Pandolfo A. G., Hollenkamp A. F. // J. Power Sources. 2006. Vol. 157. P. 11–27.
6. Inagaki M., Konno H., Tanaike О. // J. Power Sources 2010. Vol. 195. P. 7880–7903.
7. Frackowiak E., Beguin F. // Carbon. 2001 Vol. 39. P. 937–950.
8. Burk A., Miller M. // J. Power Sources. 2011. Vol. 196. P. 514–522.
9. Вольфкович Ю. M., Рычагов А. Ю., Сосенкин В. E., Крестинин А. В. // Электрохим. энергетика. 2008. T. 8, № 2. С. 106–110.
10. Измайлова М. Ю., Рычагов А. Ю., Денъщиков К. К., Вольфкович Ю. М., Лозинская Е. И., Шаплов А. С. // Электрохимия. 2009. Т. 45, № 8. С. 1014–1015.
11. Рычагов А. Ю., Вольфкович Ю. М. // Электрохимия. 2009. Т. 45, № 2. С. 323–331.
12. Yolfkovich Y. М., Mikhailin A. A., Bograchev D. А., Sosenkin V. Е., Bagotsky V. S. Recent Trend in Electrochemical Science and Technology, Chapter 7, INTECH open access publisher. 2012. P. 159–182. URL: www.intechopen.com
13. Volfkovich Yu. M., Bagotzky V. S. // J. Power Sources. 1994. Vol. 48. P. 327–348.
14. Krestinin A. V, Kiselev N. A., Raevskii А. V, Ryabenko A. G, Zakharov D. N., Zvereva G. I. // Eurasian Chem. Tech. J. 2003.Vol. 5(1). P. 7–18.
15. Krestinin A. V, Raevskii A. V., Kiselev N. A., Zvereva G. I., Zhigalina О. M., Kolesova О. I. // Chem. Phys. Lett. 2003. Vol. 381. P. 529–534.
16. Usoltseva A., Kuznetsov V, Rudina N., Moroz E., Haluska M., Roth S. // Phys. Status Solidi, 2007. Vol. 244 P. 3920–3929.
17. Kuznetsov V. L., Elumeeva К. V, Ishchenko A. V., Beylina N. Yu., Stepashkin A. A., Moseenkov S. I., Plyasova L. M., Molina I. Yu., Romanenko A. L, Anikeeva О. B., Tkachev E. N. // Phys. Status Solidi B. 2010, Vol. 247. P. 2695–2706.
18. Bokova S. N., Obraztsova E. D., Grebenyukov V. V, Elumeeva К. V, Ishchenko A. V. Kuznetsov V. L. // Phys. Status Solidi B. 2010. Vol. 247 P. 2827–2836.
19. Cherstiouk О. V, Kuznetsov V. L., Simonov A. N., Mazov I. N., Elumeeva К. V, Moseva N. S. // Phys. Status Solidi B. 2010. Vol. 247 P. 2738–2749.
20. Hummers W. S., Offman R. E. // J. Amer. Chem. Soc. 1958. Vol. 80. P. 1339–1348.
21. Квачева Л. Д., Абрамчук С. С., Бобринецкий И. И., Неволин В. К., Червонобродов С. П. // Тез. докл. шестой Национ. конф. по применению рентгеновского, синхротронного излучений, нейтронов и электронов для исследования материалов (РСНЭ-2007). М., 2007. С. 280.
22. Kravchik А. Е., Kukushkin J. A., Sokolov V. V., Tereshchenko G. F. // Carbon. 2006. Vol. 44. P. 3263–3272.
23. Кравчик A. E. Кукушкина Ю. А., Соколов В. В., Терещенко Г. Ф. Устинов Е. А. // Жури, прикл. химии. 2008. Т. 81, № 10. С. 1605–1614.
24. Рычагов А. Ю., Конев Д. В., Вольфович Ю. М., Воротынцев М. А., Цивадзе А. Ю. Фундаментальные проблемы электрохимической энергетики: сб. материалов VIII Междунар. конф. Саратов, 2011. С. 368.
25. Vorotyntsev М. A., Konev D. V., Devillers Ch. Н., Bezverkhyy I., Heintz О. // Electrochim. Acta. 2011. Vol. 56, P. 3436–3442.
26. Михайлова А. А., Тусеева Е. К, Рычагов А. Ю., Вольфкович Ю. M., Крестинин А. В., Хазова О. A. // Электрохимия. 2010. T. 46, № 11. С. 1368–1376.
27. Peng С., Jin J., Chen G. Z. // Electrochim. Acta. 2007. Vol. 53. P. 525–537.
28. Andreas H. A., Conway В. E. // Electrochim. Acta. 2006. Vol. 51. P. 6510–6519.
29. Kimizuka O., Tanaike O., Yamashita J., Hiraoka T, Futaba D. N., Hata K., Mashida K., Suematsu S., Tamamitsu K., Saeki S., Yamada Y., Hatori H. // Carbon. 2008. Vol. 46. P. 1999–2008.
30. Ruch P. W., Hardwick L. J., Hahn M., Foelske A., Kotz R., Wokaun A. // Carbon. 2009. Vol. 47. P. 38–47.
31. Фенелонов В. Б. Пористый углерод. Новосибирск, 1995. 513 с.
32. Хейфец Л. И., Неймарк А. В. Многофазные процессы в пористых средах. М., 1982.
33. Chmiola J., Yushin G., Gogotsi Y., Portet C., Simon P, Taberna P. И Science. 2006. Vol. 313. P. 1760–1768.
34. Вольфкович Ю. M., Михалин А. А., Бограчев Д. A., Сосенкин В. E. // Электрохимия. 2012. T. 48, № 4. C. 467–477.
35. Volfkovich Yu. M., Shmatko P. A. // The 8th Intern. Seminar on Double Layer Capacitors and Similar Energy Storage Devices, Deerfield Beach, Florida, December 7–9, 1998, Special is. P. 1–48.
36. Pat. 6466429 US, H01G9/00. Volfkovich Yu. M., Shmatko Yu. M. Electric double layer capasitor.