Для цитирования:
Кулова Т. Л., Скундин А. М. Ренессанс литиевого электрода // Электрохимическая энергетика. 2023. Т. 23, вып. 2. С. 57-79. DOI: 10.18500/1608-4039-2023-23-2-57-79, EDN: KNFQNY
Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0).
Полный текст в формате PDF(Ru):
(загрузок: 143)
Язык публикации:
русский
Рубрика:
Тип статьи:
Научная статья
УДК:
544.6:621.355
EDN:
KNFQNY
Ренессанс литиевого электрода
Авторы:
Кулова Татьяна Львовна, Федеральное государственное бюджетное учреждение науки Институт физической химии и электрохимии им. А.Н. Фрумкина Российской академии наук
Скундин Александр Мордухаевич, Федеральное государственное бюджетное учреждение науки Институт физической химии и электрохимии им. А.Н. Фрумкина Российской академии наук
Аннотация:
Рассмотрены работы последних 15 лет, посвящённые возможности использования металлического лития в аккумуляторах.
Ключевые слова:
Благодарности:
Исследование выполнено при финансовой поддержке Министерства науки и высшего образования Российской Федерации.
Список источников:
- Xu W., Wang J., Ding F., Chen X., Nasybulin E., Zhangad Y., and Zhang J.-G. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci., 2014, vol. 7, pp. 513–537. https://doi.org/10.1039/C3EE40795K
- Liu J., Bao Z., Cui Y., Dufek E. J., Goodenough J. B., Khalifah P., Li Q., Liaw B. Y., Liu P., Manthiram A., Meng Y. S., Subramanian V. R., Toney M. F., Viswanathan V. V., Whittingham M. S., Xiao J., Xu W., Yang J., Yang X.-Q., and Zhang J.-G. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy, 2019, vol. 4, pp. 180–186. https://doi.org/10.1038/s41560-019-0338-x
- Lin D., Liu Y., and Cui Y. Reviving the lithium metal anode for high-energy batteries. Nature Nanotech., 2017, vol. 12, pp. 194–206. https://doi.org/10.1038/nnano.2017.16
- Li Y., Li Y., Zhang L., Tao H., Li Q., Zhang J., and Yang X. Lithiophilicity: The key to efficient lithium metal anodes for lithium batteries. J. Energy Chem., 2023, vol. 77, pp. 123–136. https://doi.org/10.1016/j.jechem.2022.10.026
- Ghazi Z. A., Sun Z., Sun C., Qi F., An B., Li F., and Cheng H.-M. Key Aspects of Lithium Metal Anodes for Lithium Metal Batteries. Small, 2019, vol. 15, article no. 1900687. https://doi.org/10.1002/smll.201900687
- Wang H., Yu Z., Kong X., Kim S. C., Boyle D. T., Qin J., Bao Z., and Cui Y. Liquid electrolyte: The nexus of practical lithium metal batteries. Joule, 2022, vol. 6, pp. 588–616. https://doi.org/10.1016/j.joule.2021.12.018
- Wei C., Zhang Y., Tian Y., Tan L., An Y., Qian Y., Xi B., Xiong S., Feng J., Qian Y. Design of safe, long-cycling and high-energy lithium metal anodes in all working conditions: Progress, challenges and perspectives. Energy Storage Mater., 2021, vol. 38, pp. 157–189. https://doi.org/10.1016/j.ensm.2021.03.006
- Cheng X.-B., Zhang R., Zhao C.-Z., and Zhang Q. Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chem. Rev., 2017, vol. 117, pp. 10403–10473. https://doi.org/10.1021/acs.chemrev.7b00115
- Guo Y., Li H., and Zhai T. Reviving Lithium-Metal Anodes for Next-Generation High-Energy Batteries. Adv. Mater., 2017, vol. 29, article no. 1700007. https://doi.org/10.1002/adma.201700007
- Sun Y., Liu N., and Cui Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat. Energy, 2016, vol. 1, article no. 16071. https://doi.org/10.1038/nenergy.2016.71
- Albertus P., Babinec S., Litzelman S., and Newman A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy, 2018, vol. 3, pp. 16–21. https://doi.org/10.1038/s41560-017-0047-2
- Varzi A., Thanner K., Scipioni R., Lecce D. D., Hassoun J., Dörfler S., Altheus H., Kaskel S., Prehal C., and Freunberger S. A. Current status and future perspectives of lithium metal batteries. J. Power Sources, 2020, vol. 480, article no. 228803. https://doi.org/10.1016/j.jpowsour.2020.228803
- Lin D., Liu Y., Pei A., and Cui Y. Nanoscale perspective: Materials designs and understandings in lithium metal anodes. Nano Res., 2017, vol. 10, pp. 4003–4026. https://doi.org/10.1007/s12274-017-1596-1
- Xu X., Wang S., Hao Wang H., Hu C., Jin Y., Liu J., and Yan H. Recent progresses in the suppression method based on the growth mechanism of lithium dendrite. J. Energy Chem., 2018, vol. 27, pp. 513–527. https://doi.org/10.1016/j.jechem.2017.11.010
- Zhang X.-Q., Cheng X.-B., and Zhang Q. Advances in Interfaces between Li Metal Anode and Electrolyte. Adv. Mater. Interfaces, 2017, vol. 5, article no. 1701097. https://doi.org/10.1002/admi.201701097
- Mauger A., Armand M., Julien C. M., Zaghib K. Challenges and issues facing lithium metal for solid-state rechargeable batteries. J. Power Sources, 2017, vol. 353, pp. 333–342. https://dx.doi.org/10.1016/j.jpowsour.2017.04.018
- Li S., Jiang M., Xie Y., Xu H., Jia J., and Li J. Developing High-Performance Lithium Metal Anode in Liquid Electrolytes: Challenges and Progress. Adv. Mater., 2018, vol. 30, article no. 1706375. https://doi.org/10.1002/adma.201706375
- Li B., Wang Y., and Yang S. A Material Perspective of Rechargeable Metallic Lithium Anodes. Adv. Energy Mater., 2018, vol. 8, article no. 1702296. https://doi.org/10.1002/aenm.201702296
- Chen S., Niu C., Lee H., Li Q., Yu L., Xu W., Zhang J., Dufek E. J., Whittingham M. S., Meng S., Xiao J., and Liu J. Critical Parameters for Evaluating Coin Cells and Pouch Cells of Rechargeable Li-Metal Batteries. Joule, 2019, vol. 3, pp. 1094–1105. https://doi.org/10.1016/j.joule.2019.02.004
- Rao X., Lou Y., Zhong S., Wang L., Li B., Xiao Y., Peng W., Zhong X., and Huang J. Strategies for Dendrite-Free lithium metal Anodes: A Mini-review. J. Electroanalyt. Chem., 2021, vol. 897, article no. 115499. https://doi.org/10.1016/j.jelechem.2021.115499
- Thirumalraj B., Hagos T. T., Huang C.-J., Teshager M. A., Cheng J.-H., Su W.-N., and Hwang B.-J. Nucleation and Growth Mechanism of Lithium Metal Electroplating. J. Am. Chem. Soc., 2019, vol. 141, pp. 18612–18623. https://doi.org/10.1021/jacs.9b10195
- Pei A., Zheng G., Shi F., Li Y., and Cui Y. Nanoscale Nucleation and Growth of Electrodeposited Lithium Metal. Nano Lett., 2017, vol. 17, pp. 1132–1139. https://doi.org/10.1021/acs.nanolett.6b04755
- Gireaud L., Grugeon S., Laruelle S., Yrieix B., and Tarascon J.-M. Lithium metal stripping/plating mechanisms studies: A metallurgical approach. Electrochem. Commun., 2006, vol. 8, pp. 1639–1649. https://doi.org/10.1016/j.elecom.2006.07.037
- Cao W., Li Q., Yu X., and Li H. Controlling Li deposition below the interface. eScience, 2022, vol. 2, pp. 47–78. https://doi.org/10.1016/j.esci.2022.02.002
- Chen X.-R., Zhao B.-C., Yan C., and Zhang Q. Review on Li Deposition in Working Batteries: From Nucleation to Early Growth. Adv. Mater., 2021, vol. 33, article no. 2004128. https://doi.org/10.1002/adma.202004128
- Wang D., Zhang W., Zheng W., Cui X., Rojo T., and Zhang Q. Towards High-Safe Lithium Metal Anodes: Suppressing Lithium Dendrites via Tuning Surface Energy. Adv. Sci., 2017, vol. 4, article no. 1600168. https://doi.org/10.1002/advs.201600168
- Aurbach D., and Cohen Y. The Application of Atomic Force Microscopy for the Study of Li Deposition Processes. J. Electrochem. Soc., 1996, vol. 143, pp. 3525–3532. https://doi.org/10.1149/1.1837248
- Aurbach D., Zinigrad E., Cohen Y., and Teller H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics, 2002, vol. 148, pp. 405–416. https://doi.org/10.1016/S0167-2738(02)00080-2
- Jana A., and Garcı́a R. E. Lithium dendrite growth mechanisms in liquid electrolytes. Nano Energy, 2017, vol. 41, pp. 552–565. https://dx.doi.org/10.1016/j.nanoen.2017.08.056
- Barai P., Higa K., and Srinivasan V. Lithium dendrite growth mechanisms in polymer electrolytes and prevention strategies. Phys. Chem. Chem. Phys., 2017, vol. 19, pp. 20493–20505. https://doi.org/10.1039/c7cp03304d
- Ely D. R., and R. Edwin Garcı́a R. E. Heterogeneous Nucleation and Growth of Lithium Electrodeposits on Negative Electrodes. J. Electrochem. Soc., 2013, vol. 160, pp. A662–A668. https://doi.org/10.1149/1.057304jes
- Hao F., Verma A., Mukherjee P. P. Electrodeposition stability of metal electrodes. Energy Storage Mater., 2019, vol. 20, pp. 1–6. https://doi.org/10.1016/j.ensm.2019.05.004
- Nishikawa K., Mori T., Nishida T., Fukunaka Y., Rosso M., and Hommae T. In Situ Observation of Dendrite Growth of Electrodeposited Li Metal. J. Electrochem. Soc., 2010, vol. 157, pp. A1212–A1217. https://doi.org/10.1149/1.3486468
- Zheng J., Engelhard M. H., Mei D., Jiao S., Polzin B. J., Zhang J.-G., and Xu W. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nat. Energy, 2017, vol. 2, article no. 17012. https://doi.org/10.1038/nenergy.2017.1
- Yan K., Wang J., Zhao S., Zhou D., Sun B., Cui Y., and Wang G. Temperature-dependent Nucleation and Growth of Dendrite-Free Lithium Metal Anodes. Angew. Chem. Int. Ed., 2019, vol. 58, pp. 11364–11368. https://doi.org/10.1002/anie.201905251
- Akolkar R. Modeling dendrite growth during lithium electrodeposition at sub-ambient temperature. J. Power Sources, 2014, vol. 246, pp. 84–89. https://dx.doi.org/10.1016/j.jpowsour.2013.07.056
- Yan K., Lu Z., Lee H.-W., Xiong F., Hsu P.-C., Li Y., Zhao J., Chu S., and Cui Y. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy, 2016, vol. 1, article no. 16010. https://doi.org/10.1038/nenergy.2016.1
- Pathak R., Chen K., Wu F., Mane A. U., Bugga R. V., Elam J. W., Qiao Q., and Zhou Y. Advanced strategies for the development of porous carbon as a Li host/current collector for lithium metal batteries. Energy Storage Mater., 2021, vol. 41, pp. 448–465. https://doi.org/10.1016/j.ensm.2021.06.015
- Su X., Dogan F., Ilavsky J., Maroni V. A., Gosztola D. J., and Lu W. Mechanisms for Lithium Nucleation and Dendrite Growth in Selected Carbon Allotropes. Chem. Mater., 2017, vol. 29, pp. 6205–6213. https://doi.org/10.1021/acs.chemmater.7b00072
- Meyerson M. L., Sheavly J. K., Dolocan A., Griffin M. P., Pandit A. H., Rodriguez R., Stephens R. M., Bout D. A. V., Heller A., and Mullins C. B. The effect of local lithium surface chemistry and topography on solid electrolyte interphase composition and dendrite nucleation. J. Mater. Chem. A, 2019, vol. 7, pp. 14882–14894. https://doi.org/10.1039/c9ta03371h
- Chandrashekar S., Trease N. M., Chang H. J., Du L.-S., Grey C. P., and Jerschow. A 7Li MRI of Li batteries reveals location of microstructural lithium. Nat. Mater., 2012, vol. 11, pp. 311–315. https://doi.org/10.1038/nmat3246
- Wang X., Zeng W., Hong L., Xu W., Yang H., Wang F., Duan H., Tang M., and Jiang H. Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates. Nat. Energy, 2018, vol. 3, pp. 227–235. https://doi.org/10.1038/s41560-018-0104-5
- Steiger J., Kramer D., and Mönig R. Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium. J. Power Sources, 2014, vol. 261, pp. 112–119. https://dx.doi.org/10.1016/j.jpowsour.2014.03.029
- Bai P., Li J., Brushetta F. R., and Bazant M. Z. Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ. Sci., 2016, vol. 9, pp. 3221–3229. https://doi.org/10.1039/C6EE01674J
- Kim W.-S., and Yoon W.-Y. Observation of dendritic growth on Li powder anode using optical cell. Electrochim. Acta, 2004, vol. 50, pp. 541–545. https://doi.org/10.1016/j.electacta.2004.03.066
- Wang Y., Tan J., Li Z., Ma L., Liu Z., Ye M., and Shen J. Recent progress on enhancing the Lithiophilicity of hosts for dendrite-free lithium metal batteries. Energy Storage Mater., 2022, vol. 53, pp. 156–182. https://doi.org/10.1016/j.ensm.2022.09.006
- Hu Z., Li Z., Xia Z., Jiang T., Wang G., Sun J., Sun P., Yan C., and Zhang L. PECVD-Derived Graphene Nanowall/Lithium Composite Anodes towards Highly Stable Lithium Metal Batteries. Energy Storage Mater., 2019, vol. 22, pp. 29–39. https://doi.org/10.1016/j.ensm.2018.12.020
- Chen X., Chen X.-R., Hou T.-Z., Li B.-Q., Cheng X.-B., Zhang R., and Zhang Q. Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes. Sci. Adv., 2019, vol. 5, article no. eaau7728. https://doi.org/10.1126/sciadv.aau7728
- Hou Z., Zhang J., Wang W., Chen Q., Li B., and Li C. Towards high-performance lithium metal anodes via the modification of solid electrolyte interphases. J. Energy Chem., 2020, vol. 45, pp. 7–17. https://doi.org/10.1016/j.jechem.2019.09.028
- Liu S., Xia X., Zhong Y., Deng S., Yao Z., Zhang L., Cheng X.-B., Wang X., Zhang Q., and Tu J. 3D TiC/C Core/Shell Nanowire Skeleton for Dendrite-Free and Long-Life Lithium Metal Anode. Adv. Energy Mater., 2017, vol. 8, article no. 1702322. https://doi.org/10.1002/aenm.201702322
- Zhang R., Chen X.-R., Chen X., Cheng X.-B., Zhang X.-Q., Yan C., and Zhang Q. Lithiophilic Sites in Doped Graphene Guide Uniform Lithium Nucleation for Dendrite-Free Lithium Metal Anodes. Angew. Chem. Int. Ed., 2017, vol. 56, pp. 7764–7768. https://doi.org/10.1002/anie.201702099
- Yue X.-Y., Wang W.-W., Wang Q.-C., Meng J.-K., Zhang Z.-Q., Wu X.-J., Yang X.-Q., and Zhou Y.-N. CoO nanofiber decorated nickel foams as lithium dendrite suppressing host skeletons for high energy lithium metal batteries. Energy Storage Mater., 2018, vol. 14, pp. 335–344. https://doi.org/10.1016/j.ensm.2018.05.017
- Yang C.-P., Yin Y.-X., Zhang S.-F., Li N.-W., and Guo Y.-G. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun., 2015, vol. 6, article no. 8058. https://doi.org/10.1038/ncomms9058
- Yun Q., He Y.-B., Lv W., Zhao Y., Li B., Kang F., and Yang Q.-H. Chemical Dealloying Derived 3D Porous Current Collector for Li Metal Anodes. Adv. Mater., 2016, vol. 28, pp. 6932–6939. https://doi.org/10.1002/adma.201601409
- Ye H., Zheng Z.-J., Yao H.-R., Liu S.-C., Zuo T.-T., Wu X.-W., Yin Y.-X., Li N.-W., Gu J.-J., Cao F.-F., and Guo Y.-G. Guiding Uniform Li Plating/Stripping through Lithium–Aluminum Alloying Medium for Long-Life Li Metal Batteries. Angew. Chem. Int. Ed., 2019, vol. 58, pp. 1094–1099. https://doi.org/10.1002/anie.201811955
- Ke X., Cheng Y., Liu J., Liu L., Wang N., Liu J., Zhi C., Shi Z., and Guo Z. Hierarchically Bicontinuous Porous Copper as Advanced 3D Skeleton for Stable Lithium Storage. ACS Appl. Mater. Interfaces, 2018, vol. 10, pp. 13552–13561. https://doi.org/10.1021/acsami.8b01978
- Lu L.-L., Ge J., Yang J.-N., Chen S.-M., Yao H., Zhou F., and Yu S.-H. Free-Standing Copper Nanowire Network Current Collector for Improving Lithium Anode Performance. Nano Lett., 2016, vol. 16, pp. 4431–4437. https://doi.org/10.1021/acs.nanolett.6b01581
- Zheng G., Lee S. W., Liang Z., Lee H.-W., Yan K., Yao H., Wang H., Li W., Chu S., and Cui Y. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol., 2014, vol. 9, pp. 618–623. https://doi.org/10.1038/nnano.2014.152
- Pathak R., Zhou Y., and Qiao Q. Recent Advances in Lithiophilic Porous Framework toward Dendrite-Free Lithium Metal Anode. Appl. Sci., 2020, vol. 10, article no. 4185. https://doi.org/10.3390/app10124185
- Zhou L., Zhang K., Hu Z., Tao Z., Mai L., Kang Y.-M., Chou S.-L., and Chen J. Recent Developments on and Prospects for Electrode Materials with Hierarchical Structures for Lithium-Ion Batteries. Adv. Energy Mater., 2018, vol. 8, article no. 1701415. https://doi.org/10.1002/aenm.201701415
- Deng W., Zhou X., Fang Q., and Liu Z. Microscale Lithium Metal Stored inside Cellular Graphene Scaffold toward Advanced Metallic Lithium Anodes. Adv. Energy Mater., 2018, vol. 8, article no. 1703152.
- Zhang R., Cheng X.-B., Zhao C.-Z., Peng H.-J., Shi J.-L., Huang J.-Q., Wang J., Wei F., and Zhang Q. Conductive Nanostructured Scaffolds Render Low Local Current Density to Inhibit Lithium Dendrite Growth. Adv. Mater., 2016, vol. 28, pp. 2155–2162. https://doi.org/10.1002/adma.201504117
- Lin K., Xu X., Qin X., Wang S., Han C., Geng H., Li X., Kang F., Chen G., and Li B. Dendrite-free lithium deposition enabled by a vertically aligned graphene pillar architecture. Carbon, 2021, vol. 185, pp. 152–160. https://doi.org/10.1016/j.carbon.2021.09.001
- Song Q., Yan H., Liu K., Xie K., Li W., Gai W., Chen G., Li H., Shen C., Fu Q., Zhang S., Zhang L., and Wei B. Vertically Grown Edge-Rich Graphene Nanosheets for Spatial Control of Li Nucleation. Adv. Energy Mater., 2018, vol. 8, article no. 1800564. https://doi.org/10.1002/aenm.201800564
- Jin S., Sun Z., Guo Y., Qi Z., Guo C., Kong X., Zhu Y., and Ji H. High Areal Capacity and Lithium Utilization in Anodes Made of Covalently Connected Graphite Microtubes. Adv. Mater., 2017, vol. 29, article no. 1700783. https://doi.org/10.1002/adma.201700783
- Zhang Y., Liu B., Hitz E., Luo W., Yao Y., Li Y., Dai J., Chen C., Wang Y., Yang C., Li H., and Hu L. A carbon-based 3D current collector with surface protection for Li metal anode. Nano Res., 2017, vol. 10, pp. 1356–1365. https://doi.org/10.1007/s12274-017-1461-2
- Ye H., Xin S., Yin Y.-X., Li J.-Y., Guo Y.-G., and Wan L.-J. Stable Li Plating/Stripping Electrochemistry Realized by a Hybrid Li Reservoir in Spherical Carbon Granules with 3D Conducting Skeletons. J. Am. Chem. Soc., 2017, vol. 139, pp. 5916–5922. https://doi.org/10.1021/jacs.7b01763
- Xie K., Wei W., Yuan K., Lu W., Guo M., Li Z., Song Q., Liu X., Wang J.-G., and Shen C. Toward Dendrite-Free Lithium Deposition via Structural and Interfacial Synergistic Effects of 3D Graphene@Ni Scaffold. ACS Appl. Mater. Interfaces, 2016, vol. 8, pp. 26091–26097. https://doi.org/10.1021/acsami.6b09031
- Zhao F., Zhou X., Deng W., and Liu Z. Entrapping lithium deposition in lithiophilic reservoir constructed by vertically aligned ZnO nanosheets for dendrite-free Li metal anodes. Nano Energy, 2019, vol. 62, pp. 55–63. https://doi.org/10.1016/j.nanoen.2019.04.087
- Xia Y., Jiang Y., Qi Y., Zhang W., Wang Y., Wang S., Liu Y., Sun W., and Zhao X.-Z. 3D stable hosts with controllable lithiophilic architectures for high-rate and high-capacity lithium metal anodes. J. Power Sources, 2019, vol. 442, article no. 227214. https://doi.org/10.1016/j.jpowsour.2019.227214
- Zhang Y., Wei C., Sun J., Jian J., Jin C., Lu C., Peng L., Li S., Rümmeli M. H., and Yang R. Au@rGO modified Ni foam as a stable host for lithium metal anode. Solid State Ionics, 2021, vol. 364, article no. 115636. https://doi.org/10.1016/j.ssi.2021.115636
- Umeda G. A., Menke E., Richard M., Stamm K. L., Wudl F., and Dunn B. Protection of lithium metal surfaces using tetraethoxysilane. J. Mater. Chem., 2011, vol. 21, pp. 1593–1599. https://doi.org/10.1039/c0jm02305a
- Liu L., Yin Y.-X., Li J.-Y., Wang S.-H., Guo Y.-G., and Wan L.-J. Uniform Lithium Nucleation/Growth Induced by Lightweight Nitrogen-Doped Graphitic Carbon Foams for High-Performance Lithium Metal Anodes. Adv. Mater., 2018, vol. 30, article no. 1706216. https://doi.org/10.1002/adma.201706216
- Yu Z., Zhou J., Lv X., Li C., Liu X., Yang S., and Liu Y. Nitrogen-doped porous carbon nanofiber decorated with FeNi alloy for dendrite-free high-performance lithium metal anode. J. Alloys Compd., 2022, vol. 925, article no. 166691. https://doi.org/10.1016/j.jallcom.2022.166691
- Xue P., Liu S., Shi X., Sun C., Lai C., Zhou Y., Sui D., Chen Y., and Liang J. A Hierarchical Silver-Nanowire–Graphene Host Enabling Ultrahigh Rates and Superior Long-Term Cycling of Lithium-Metal Composite Anodes. Adv. Mater., 2018, vol. 30, article no. 1804165. https://doi.org/10.1002/adma.201804165
- Xu T., Hou L., Yan C., Hou J., Tian B., Yuan H., Kong D., Wang H., Li X., Wang Y., and Zhang G. Uniform lithium deposition guided by Au nanoparticles in vertical-graphene/carbon-cloth skeleton for dendrite-free and stable lithium metal anode. Scr. Mater., 2023, vol. 229, article no. 115352. https://doi.org/10.1016/j.scriptamat.2023.115352
- Xu C., Wang H., Liu X., Liu G., Zhang Z., Wu C., and Li J. Lithiophilic vanadium oxide coated three-dimensional carbon network design towards stable lithium metal anode. J. Power Sources, 2023, vol. 562, article no. 232778. https://doi.org/10.1016/j.jpowsour.2023.232778
- Kozen A. C., Lin C.-F., Pearse A. J., Schroeder M. A., Han X., Hu L., Lee S.-B., Rubloff G. W., and Noked M. Next-Generation Lithium Metal Anode Engineering via Atomic Layer Deposition. ACS Nano, 2015, vol. 9, pp. 5884–5892. https://doi.org/10.1021/acsnano.5b02166
- Wu S., Zhang Z., Lan M., Yang S., Cheng J., Cai J., Shen J., Zhu Y., Zhang K., and Zhang W. Lithiophilic Cu-CuO-Ni Hybrid Structure: Advanced Current Collectors Toward Stable Lithium Metal Anodes. Adv. Mater., 2018, vol. 30, article no. 1705830. https://doi.org/10.1002/adma.201705830
- Chen X.-R., Li B.-Q., Zhao C.-X., Zhang R., and Zhang Q. Synergetic Coupling of Lithiophilic Sites and Conductive Scaffolds for Dendrite-Free Lithium Metal Anodes. Small Methods, 2019, vol. 4, article no. 1900177. https://doi.org/10.1002/smtd.201900177
- Li B.-Q., Zhang S.-Y., Wang B., Xia Z.-J., Tang C., and Zhang Q. A Porphyrin Covalent Organic Framework Cathode for Flexible Zn-Air Batteries. Energy Environ. Sci., 2018, vol. 11, pp. 1723–1729. https://doi.org/10.1039/C8EE00977E
- Luo L., Li J., Asl H. Y., and Manthiram A. A 3D Lithiophilic Mo2N-Modified Carbon Nanofiber Architecture for Dendrite-Free Lithium-Metal Anodes in a Full Cell. Adv. Mater., 2019, vol. 31, article no. 1904537. https://doi.org/10.1002/adma.201904537
- Gao Y., Zhao Y., Li Y. C., Huang Q., Mallouk T. E., and Wang D. Interfacial Chemistry Regulation via a Skin-Grafting Strategy Enables High-Performance Lithium-Metal Batteries. J. Am. Chem. Soc., 2017, vol. 139, pp. 15288–15291. https://doi.org/10.1021/jacs.7b06437
- Tung S.-O., Ho S., Yang M., Zhang R., and A. Kotov N. A. A dendrite-suppressing composite ion conductor from aramid nanofibers. Nat. Commun., 2015, vol. 6, article no. 6152. https://doi.org/10.1038/ncomms7152
- Liu K., Pei A., Lee H. R., Kong B., Liu N., Lin D., Liu Y., Liu C., Hsu P., Bao Z., and Cui Y. Lithium Metal Anodes with an Adaptive “Solid-Liquid” Interfacial Protective Layer. J. Am. Chem. Soc., 2017, vol. 139, pp. 4815–4820. https://doi.org/10.1021/jacs.6b13314
- Choudhury S., Mangal R., Agrawal A., and Archer L. A. A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles. Nat. Commun., 2015, vol. 6, article no. 10101. https://doi.org/10.1038/ncomms10101
- Kong X., Rudnicki P. E., Choudhury S., Bao Z., and Qin J. Dendrite Suppression by a Polymer Coating: A Coarse-Grained Molecular Study. Adv. Funct. Mater., 2020, vol. 30, article no. 1910138. https://doi.org/10.1002/adfm.201910138
- Wang D., Liu H., Liu F., Ma G., Yang J., Gu X., Zhou M., and Chen Z. Phase-Separation-Induced Porous Lithiophilic Polymer Coating for High-Efficiency Lithium Metal Batteries. Nano Lett., 2021, vol. 21, pp. 4757–4764. https://doi.org/10.1021/acs.nanolett.1c01241
- Jang E. K., Ahn J., Yoon S., and Cho K. Y. High Dielectric, Robust Composite Protective Layer for Dendrite-Free and LiPF6 Degradation-Free Lithium Metal Anode. Adv. Funct. Mater., 2019, vol. 29, article no. 1905078. https://doi.org/10.1002/adfm.201905078
- Li N., Ye Q., Zhang K., Yan H., Shen C., Wei B., and Xie K. Normalized Lithium Growth from the Nucleation Stage for Dendrite-Free Lithium Metal Anodes. Angew. Chem. Int. Ed., 2019, vol. 58, pp. 18246–18251. https://doi.org/10.1002/anie.201911267
- Liu W., Lin D., Pei A., and Cui Y. Stabilizing Lithium Metal Anodes by Uniform Li-Ion Flux Distribution in Nanochannel Confinement. J. Am. Chem. Soc., 2016, vol. 138, pp. 15443–15450. https://doi.org/10.1021/jacs.6b08730
- Long K., Huang S., Wang H., Jin Z., Wang A., Wang Z., Qing P., Liu Z., Chen L., Mei L., and Wang W. High interfacial capacitance enabled stable lithium metal anode for practical lithium metal pouch cells. Energy Storage Mater., 2023, vol. 58, pp. 142–154. https://doi.org/10.1016/j.ensm.2023.02.039
- Zhang C., Lv W., Zhou G., Huang Z., Zhang Y., Lyu R., Wu H., Yun Q., Kang F., and Yang Q.-H. Vertically Aligned Lithiophilic CuO Nanosheets on a Cu Collector to Stabilize Lithium Deposition for Lithium Metal Batteries. Adv. Energy Mater., 2018, vol. 8, article no. 1703404. https://doi.org/10.1002/aenm.201703404
- Pang Q., Liang X., Kochetkov I. R., Hartmann P., and Nazar L. F. Stabilizing Lithium Plating by a Biphasic Surface Layer Formed In Situ. Angew. Chem. Int. Ed., 2018, vol. 130, pp. 9943–9946. https://doi.org/10.1002/anie.201805456
- Liang X., Pang Q., Kochetkov I. R., Sempere M. S., Huang H., Sun X., and Nazar L. F. A facile surface chemistry route to a stabilized lithium metal anode. Nat. Energy, 2017, vol. 2, pp. 17119–17124. https://doi.org/10.1038/nenergy.2017.119
- Tu Z., Choudhury S., Zachman M. J., Wei S., Zhang K., Kourkoutis L. F., and Archer L. A. Fast ion transport at solid–solid interfaces in hybrid battery anodes. Nat. Energy, 2018, vol. 3, pp. 310–316. https://doi.org/10.1038/s41560-018-0096-1
- Wu M., Wen Z., Liu Y., Wang X., and Huang L. Electrochemical behaviors of a Li3N modified Li metal electrode in secondary lithium batteries. J. Power Sources, 2011, vol. 196, pp. 8091–8097. https://doi.org/10.1016/j.jpowsour.2011.05.035
- Zhang Y. J., Wang W., Tang H., Bai W. Q., Ge X., Wang X. L., Gu C. D., Tu J. P. An ex-situ nitridation route to synthesize Li3N-modified Li anodes for lithium secondary batteries. J. Power Sources, 2015, vol. 277, pp. 304–311. https://dx.doi.org/10.1016/j.jpowsour.2014.12.023
- Luo W., Zhou L., Fu K., Yang Z., Wan J., Manno M., Yao Y., Zhu H., Yang B., and Hu L. A Thermally Conductive Separator for Stable Li Metal Anodes. Nano Lett., 2015, vol. 15, pp. 6149–6154. https://doi.org/10.1021/acs.nanolett.5b02432
- Kazyak E., Wood K. N., and Dasgupta N. P. Improved Cycle Life and Stability of Lithium Metal Anodes through Ultrathin Atomic Layer Deposition Surface Treatments. Chem. Mater., 2015, vol. 27, pp. 6457–6462. https://doi.org/10.1021/acs.chemmater.5b02789
- Wang H., Li Y., Li Y., Liu Y., Lin D., Zhu C., Chen G., Yang A., Yan K., Chen H., Zhu Y., Li J., Xie J., Xu J., Zhang Z., Vilá R., Pei A., Wang K., and Cui Y. Wrinkled Graphene Cages as Hosts for High-Capacity Li Metal Anodes Shown by Cryogenic Electron Microscopy. Nano Lett., 2019, vol. 19, pp. 1326–1335. https://doi.org/10.1021/acs.nanolett.8b04906
- Lin D., Liu Y., Liang Z., Lee H.-W., Sun J., Wang H., Yan K., Xie J., and Cui Y. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat. Nanotech., 2016, vol. 11, pp. 626–632. https://doi.org/10.1038/nnano.2016.32
- Liu Z., Ha S., Liu Y., Wang F., Tao F., Xu B., Yu R., Wang G., Ren F., and Li H. Application of Ag-based materials in high-performance lithium metal anode: A review. J. Mater. Sci. Technol., 2023, vol. 133, pp. 165–182. https://doi.org/10.1016/j.jmst.2022.06.015
- Yang C., Yao Y., He S., Xie H., Hitz E., and Hu L. Ultrafine Silver Nanoparticles for Seeded Lithium Deposition toward Stable Lithium Metal Anode. Adv. Mater., 2017, vol. 29, article no. 1702714. https://doi.org/10.1002/adma.201702714
- Hou Z., Yu Y., Wang W., Zhao X., Di Q., Chen Q., Chen W., Liu Y., and Quan Z. Lithiophilic Ag Nanoparticle Layer on Cu Current Collector toward Stable Li Metal Anode. ACS Appl. Mater. Interfaces, 2019, vol. 11, pp. 8148–8154. https://doi.org/10.1021/acsami.9b01521
- Wang X., Pan Z., Wu Y., Xu G., Zheng X., Qiu Y., Liu M., Zhang Y., Li W. Reducing Lithium Deposition Overpotential with Silver Nanocrystals Anchored on Graphene Aerogel. Nanoscale, 2018, vol. 10, pp. 16562–16567. https://doi.org/10.1039/C8NR04655G
- Wang H., Hu P., Liu X., Shen Y., Yuan L., Li Z., and Huang Y. Sowing Silver Seeds within Patterned Ditches for Dendrite-Free Lithium Metal Batteries. Adv. Sci., 2021, vol. 8, article no. 2100684. 2100684https://doi.org/10.1002/advs.202100684
- Zhang S. S., Fan X., and Wang C. A tin-plated copper substrate for efficient cycling of lithium metal in an anode-free rechargeable battery. Electrochim. Acta, 2017, vol. 258, pp. 1201–1207. https://doi.org/10.1016/j.electacta.2017.11.175
- Cheng X.-B., Hou T.-Z., Zhang R., Peng H.-J., Zhao C.-Z., Huang J.-Q., and Zhang Q. Dendrite-Free Lithium Deposition Induced by Uniformly Distributed Lithium Ions for Efficient Lithium Metal Batteries. Adv. Mater., 2016, vol. 28, pp. 2888–2895. https://doi.org/10.1002/adma.201506124
- Liang Z., Zheng G., Liu C., Liu N., Li W., Yan K. Yao H., Hsu P., Chu S., and Cui Y. Polymer Nanofiber-Guided Uniform Lithium Deposition for Battery Electrodes. Nano Lett., 2015, vol. 15, pp. 2910–2916. https://doi.org/10.1021/nl5046318
- Liu Y., Lin D., Liang Z., Zhao J., Yan K., and Cui Y. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. Nat. Commun., 2016, vol. 7, article no. 10992. https://doi.org/10.1038/ncomms10992
- Zu C., Li J., Cai B., Qiu J., Zhao Y., Yang Q., Li H., and Yu H. Separators with reactive metal oxide coatings for dendrite-free lithium metal anodes. J. Power Sources, 2023, vol. 555, article no. 232336. https://doi.org/10.1016/j.jpowsour.2022.232336
- Liu B., Zhang Y., Pan G., Ai C., Deng S., Liu S., Liu Q., Wang X., Xia X., and Tu J. Ordered lithiophilic sites to regulate Li plating/stripping behavior for superior lithium metal anodes. J. Mater. Chem. A, 2019, vol. 7, pp. 21794–21801. https://doi.org/10.1039/C9TA09502K
- Ju Z., Nai J., Wang Y., Liu T., Zheng J., Yuan H., Sheng O., Jin C., Zhang W., Jin Z., Tian H., Liu Y., and Tao X. Biomacromolecules enabled dendrite-free lithium metal battery and its origin revealed by cryoelectron microscopy. Nat. Commun., 2020, vol. 11, pp. 488–496. https://doi.org/10.1038/s41467-020-14358-1
- Ren X., Zou L., Cao X., Engelhard M. H., Liu W., Burton S. D., Lee H., Niu C., Matthews B. E., Zhu Z., Wang C., Arey B. W., Xiao J., Liu J., Zhang J.-G., and Xu W. Enabling High-Voltage Lithium-Metal Batteries under Practical Conditions. Joule, 2019, vol. 3, pp. 1662–1676. https://doi.org/10.1016/j.joule.2019.05.006
- Qian J., Henderson W. A., Xu W., Bhattacharya P., Engelhard M., Borodin O., and Zhang J.-G. High rate and stable cycling of lithium metal anode. Nat. Commun., 2015, vol. 6, article no. 6362. https://doi.org/10.1038/ncomms7362
- Wang J., Huang W., Pei A., Li Y., Shi F., Yu X., and Cui Y. Improving cyclability of Li metal batteries at elevated temperatures and its origin revealed by cryo-electron microscopy. Nat. Energy, 2019, vol. 4, pp. 664–670. https://doi.org/10.1038/s41560-019-0413-3
- Miao R., Yang J., Feng X., Jia H., Wang J., and Nuli Y. Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility. J. Power Sources, 2014, vol. 271, pp. 291–297. https://dx.doi.org/10.1016/j.jpowsour.2014.08.011
- Weber R., Genovese M., Louli A. J., Hames S., Martin C., Hill I. G., and Dahn J. R. Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte. Nat. Energy, 2019, vol. 4, pp. 683–689. https://doi.org/10.1038/s41560-019-0428-9
- Xue W., Huang M., Li Y., Zhu Y. G., Gao R., Xiao X., Zhang W., Li S., Xu G., Yu Y., Li P., Lopez J., Yu D., Dong Y., Fan W., Shi Z., Xiong R., Sun C.-J., and Hwa I. Ultra-high-voltage Ni-rich layered cathodes in practical Li metal batteries enabled by a sulfonamide-based electrolyte. Nat. Energy, 2021, vol. 6, pp. 495–505. https://doi.org/10.1038/s41560-021-00792-y
- Yu H., Zhao J., Ben L., Zhan Y., Wu Y., and Huang X. Dendrite-Free Lithium Deposition with Self-Aligned Columnar Structure in a Carbonate-Ether Mixed Electrolyte. ACS Energy Lett., 2017, vol. 2, pp. 1296–1302. https://doi.org/10.1021/acsenergylett.7b00273
- Ren X., Zhang Y., Engelhard M. H., Li Q., Zhang J., and Xu W. Guided Lithium Metal Deposition and Improved Lithium Coulombic Efficiency through Synergistic Effects of LiAsF6 and Cyclic Carbonate Additives. ACS Energy Lett., 2018, vol. 3, pp. 14–19. https://doi.org/10.1021/acsenergylett.7b00982
- Lu Y., Tu Z., Shu J., and Archer L. A. Stable lithium electrodeposition in salt-reinforced electrolytes. J. Power Sources, 2015, vol. 279, pp. 413–418. https://dx.doi.org/10.1016/j.jpowsour.2015.01.030
- Qian J., Xu W., Bhattacharya P., Engelhard M., Henderson W. A., Zhang Y., and Zhang J.-G. Dendrite-free Li deposition using trace-amounts of water as an electrolyte additive. Nano Energy, 2015, vol. 15, pp. 135–144. https://dx.doi.org/10.1016/j.nanoen.2015.04.009
- Togasaki N., Momma T., and Osaka T. Enhancement effect of trace H2O on the charge-discharge cycling performance of a Li metal anode. J. Power Sources, 2014, vol. 261, pp. 23–27. https://dx.doi.org/10.1016/j.jpowsour.2014.03.040
- Yang Y., Davies D. M., Yin Y., Borodin O., Lee J. Z., Fang C., Olguin M., Zhang Y., Sablina E. S., Wang X., Rustomji C. S., and Meng Y. S. High-Efficiency Lithium-Metal Anode Enabled by Liquefied Gas Electrolytes. Joule, 2019, vol. 3, pp. 1986–2000. https://doi.org/10.1016/j.joule.2019.06.008
- Rustomji C. S., Yang Y., Kim T. K., Mac J., Kim Y. J., Caldwell E., Chung H., and Meng Y. S. Liquefied gas electrolytes for electrochemical energy storage devices. Science, 2017, vol. 356. iss. 6345, article no. eaal4263. https://doi.org/10.1126/science.aal4263
- Kim J.-S., Kim D. W., Jung H. T., and Choi J. W. Controlled Lithium Dendrite Growth by a Synergistic Effect of Multilayered Graphene Coating and an Electrolyte Additive. Chem. Mater., 2015, vol. 27, pp. 2780–2787. https://doi.org/10.1021/cm503447u
- Ding F., Xu W., Graff G. L., Zhang J., Sushko M. L., Chen X., Shao Y., Engelhard M. H., Nie Z., Xiao J., Liu X., Sushko P. V., Liu J., and Zhang J.-G. Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism. J. Am. Chem. Soc., 2013, vol. 135, pp. 4450–4456. https://doi.org/10.1021/ja312241y
- Zhang Y., Qian J., Xu W., Russell S. M., Chen X., Nasybulin E., Bhattacharya P., Engelhard M. H., Mei D., Cao R., Ding F., Cresce A. V., Xu K., and Zhang J.-G. Dendrite-Free Lithium Deposition with Self-Aligned Nanorod Structure. Nano Lett., 2014, vol. 14, pp. 6889–6896. https://doi.org/10.1021/nl5039117
- Stark J. K., Ding Y., and Kohl P. A. Nucleation of Electrodeposited Lithium Metal: Dendritic Growth and the Effect of Co-Deposited Sodium. J. Electrochem. Soc., 2013, vol. 160, pp. D337–D342. https://doi.org/10.1149/2.028309jes
- Shen Y., Zhang Y., Han S., Wang J., Peng Z., and Chen L. Unlocking the Energy Capabilities of Lithium Metal Electrode with Solid-State Electrolytes. Joule, 2018, vol. 2, pp. 1674–1689. https://doi.org/10.1016/j.joule.2018.06.021
- Bouchet R. Maria S., Meziane R., Aboulaich A., Lienafa L., Bonnet J.-P., Phan T. N. T., Bertin D., Gigmes D., Devaux D., Denoyel R., and Armand M. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat. Mater., 2013, vol. 12, pp. 452–457. https://doi.org/10.1038/nmat3602
- Yang Q., Wang A., Luo J., and Tang W. Improving ionic conductivity of polymer-based solid electrolytes for lithium metal batteries. Chin. J. Chem. Eng., 2022, vol. 43, pp. 202–215. https://doi.org/10.1016/j.cjche.2021.07.008
- Meng N., Zhu X., and Lian F. Particles in composite polymer electrolyte for solid-state lithium batteries: A review. Particuology, 2022, vol. 60, pp. 14–36. https://doi.org/10.1016/j.partic.2021.04.002
- Zhao Y., Wu C., Peng G., Chen X., Yao X., Bai Y., Wu F., Chen S., and Xu X. A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries. J. Power Sources, 2016, vol. 301, pp. 47–53. https://dx.doi.org/10.1016/j.jpowsour.2015.09.111
- Wang Z., Miao C., Xiao W., Zhang Y., Mei P., Yan X., Jiang Y., and Tian M. Effect of different contents of organic-inorganic hybrid particles poly(methyl methacrylate) – ZrO2 on the properties of poly(vinylidene fluoride-hexafluoroprolene)-based composite gel polymer electrolytes. Electrochim. Acta, 2018, vol. 272, pp. 127–134. https://doi.org/10.1016/j.electacta.2018.04.040
- Zeng X.-X., Yin Y.-X., Li N.-W., Du W.-C., Guo Y.-G., and Wan L.-J. Reshaping Lithium Plating/Stripping Behavior via Bifunctional Polymer Electrolyte for Room-Temperature Solid Li Metal Batteries. J. Am. Chem. Soc., 2016, vol. 138, pp. 15825–15828. https://doi.org/10.1021/jacs.6b10088
- Khurana R., Schaefer J. L., Archer L. A., and Coates G. W. Suppression of Lithium Dendrite Growth Using Cross-Linked Polyethylene/Poly(ethylene oxide) Electrolytes: A New Approach for Practical Lithium-Metal Polymer Batteries. J. Am. Chem. Soc., 2014, vol. 136, pp. 7395–7402. https://doi.org/10.1021/ja502133j
- Liu Y., Cai Z., Tan L., and Li L. Ion exchange membranes as electrolyte for high performance Li-ion batteries. Energy Environ. Sci., 2012, vol. 5, pp. 9007–9013. https://doi.org/10.1039/C2EE22753C
- Liu Y., Tan L., and Li L. Ion exchange membranes as electrolyte to improve high temperature capacity retention of LiMn2O4 cathode lithium-ion batteries. Chem. Commun., 2012, vol. 48, pp. 9858–9860. https://doi.org/10.1039/C2CC34529C
- Cai Z., Liu Y., Liu S., Li L., and Zhang Y. High performance of lithium-ion polymer battery based on non-aqueous lithiated perfluorinated sulfonic ion-exchange membranes. Energy Environ. Sci., 2012, vol. 5, pp. 5690–5693. https://doi.org/10.1039/c1ee02708e
- Lu Y., Tikekar M., Mohanty R., Hendrickson K., Ma L., and Archer L. A. Stable Cycling of Lithium Metal Batteries Using High Transference Number Electrolytes. Adv. Energy Mater., 2015, vol. 5, article no. 1402073. https://doi.org/10.1002/aenm.201402073
- Pan Q., Smith D. M., Qi H., Wang S., and Li C. Y. Hybrid Electrolytes with Controlled Network Structures for Lithium Metal Batteries. Adv. Mater., 2015, vol. 27, pp. 5995–6001. https://doi.org/10.1002/adma.201502059
- Su L., Darling R. M., Gallagher K. G., Xie W., Thelen J. L., Badel A. F., Barton J. L., Cheng K. J., Balsara N. P., Moore J. S., and Brushett F. R. An Investigation of the Ionic Conductivity and Species Crossover of Lithiated Nafion 117 in Nonaqueous Electrolytes. J. Electrochem. Soc., 2016, vol. 163, pp. A5253–A5262. https://doi.org/10.1149/2.03211601jes
- Sanginov E. A., Evshchik E. Yu., Kayumov R. R., and Dobrovol’skii Yu. A. Lithium-Ion Conductivity of the Nafion Membrane Swollen in Organic Solvents. Russ. J. Electrochem., 2015, vol. 51, pp. 986–990. https://doi.org/10.1134/s1023193515100122
- Sanginov E. A., Kayumov R. R., Shmygleva L. V., Lesnichaya V. A., Karelin A. I., and Dobrovolsky Y. A. Study of the transport of alkali metal ions in a nonaqueous polymer electrolyte based on Nafion. Solid State Ionics, 2017, vol. 300, pp. 26–31. https://doi.org/10.1016/j.ssi.2016.11.017
- Voropaeva D. Yu., Novikova S. A., Kulova T. L., and Yaroslavtsev A. B. Conductivity of Nafion-117 membranes intercalated by polar aprotonic solvents. Ionics, 2018, vol. 24, pp. 1685–1692. https://doi.org/10.1007/s11581-017-2333-1
- Voropaeva D. Yu., and Yaroslavtsev A. B. Polymer Electrolyte for Lithium Metal Batteries Based on Nafion and N,N-Dimethylacetamide. Membr. Membr. Technol., 2022, vol. 4, pp. 276–279. https://doi.org/10.1134/S2517751622040102
- Kayumov R. R., Shmygleva L. V., Evshchik E. Yu., Sanginov E. A., Popov N. A., Bushkova O. V., and Dobrovolsky Yu. A. Conductivity of Lithium-Conducting Nafion Membranes Plasticized by Binary and Ternary Mixtures in the Sulfolan–Ethylene Carbonate–Diglyme System. Russ. J. Electrochem., 2021, vol. 57, pp. 911–920. https://doi.org/10.1134/S1023193521060045
- Istomina A. S., Yaroslavtseva T. V., Reznitskikh O. G., Kayumov R. R., Shmygleva L. V., Sanginov E. A., Dobrovolsky Y. A., and Bushkova O. V. Li-Nafion Membrane Plasticised with Ethylene Carbonate/Sulfolane: Influence of Mixing Temperature on the Physicochemical Properties. Polymers, 2021, vol. 13, article no. 1150. https://doi.org/10.3390/polym13071150
- Sanginov E. A., Borisevich S. S., Kayumov R. R., Istomina A. S., Evshchik E. Yu., Reznitskikh O. G., Yaroslavtseva T. V., Melnikova T. I., Dobrovolsky Yu. A., and Bushkova O. V. Lithiated Nafion plasticised by a mixture of ethylene carbonate and sulfolane. Electrochim. Acta, 2021, vol. 373, article no. 137914. https://doi.org/10.1016/j.electacta.2021.137914
- Karelin A. I., Kayumov R. R., Sanginov E. A., and Dobrovolsky Yu. A. Structure of Lithium Ion-Conducting Polymer Membranes Based on Nafion Plasticized with Dimethylsulfoxide. Pet. Chem., 2016, vol. 56, pp. 1020–1026. https://doi.org/10.1134/S0965544116110074
- Alexander Skundin, Tatiana Kulova, Alexander Rudy, and Alexander Mironenko. All Solid State Thin-Film Lithium-Ion Batteries: Materials, Technology, and Diagnostics. CRC Press, Taylor & Francis Group, 2021. 214 p. ISBN: 9780367086824
- Bates J. B., Dudney N. J., Gruzalski G. R., Zuhr R. A., Choudhury A., Luck C. F., and Robertson J. D. Electrical properties of amorphous lithium electrolyte thin films. Solid State Ionics, 1992, vol. 53–56, pp. 647–654. https://doi.org/10.1016/0167-2738(92)90442-R
- Bates J. B., Dudney N. J., Gruzalski G. R., Zuhr R. A., Choudhury A., Luck C. F., and Robertson J. D. Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries J. Power Sources, 1993, vol. 43–44, pp. 103–110. https://doi.org/10.1016/0378-7753(93)80106-Y
- Bates J. B., Dudney N. J., Lubben D. C., Gruzalski G. R., Kwak B. S., Yu X., and Zuhr R. A. Thin-film rechargeable lithium batteries. J. Power Sources, 1995, vol. 54, pp. 58–62. https://doi.org/10.1016/0378-7753(94)02040-A
- Lv Q., Jiang Y., Wang B., Chen Y., Jin F., Wu B., Ren H., Zhang N., Xu R., Li Y., Zhang T., Zhou Y., Wang D., Liu H., and Dou S. Suppressing lithium dendrites within inorganic solid-state electrolytes. Cell Rep. Phys. Sci., 2022, vol. 3, article no. 100706. https://doi.org/10.1016/j.xcrp.2021.100706
- Chen L., Ding K., Li K., Li Z., Zhang X., Zheng Q., Cai Y.-P., and Lan Y.-Q. Crystalline Porous Materials-based Solid-State Electrolytes for Lithium Metal Batteries. EnergyChem., 2022, vol. 4, article no. 100073. https://doi.org/10.1016/j.enchem.2022.100073
- Paul P. P., Chen B.-R., Langevin S. A., Dufek E. J., Weker J. N., and Ko J. S. Interfaces in all solid state Li-metal batteries: A review on instabilities, stabilization strategies, and scalability. Energy Storage Mater., 2022, vol. 45, pp. 969–1001. https://doi.org/10.1016/j.ensm.2021.12.021
- Das A., Sahu S., Mohapatra M., Verma S., Bhattacharyya A. J., and Basu S. Lithium-ion conductive glass-ceramic electrolytes enable safe and practical Li batteries. Mater. Today Energy, 2022, vol. 29, article no. 101118. https://doi.org/10.1016/j.mtener.2022.101118
- Krauskopf T., Richter F. H., Zeier W. G., and Janek J. Physicochemical Concepts of the Lithium Metal Anode in Solid-State Batteries. Chem. Rev., 2020, vol. 120, pp. 7745–7794. https://doi.org/10.1021/acs.chemrev.0c00431
- Hatzell K. B., Chen X. C., Cobb C. L., Dasgupta N. P., Dixit M. B., Marbella L. E., McDowell M. T., Mukherjee P. P., Verma A., Viswanathan V., Westover A. S., and Zeier W. G. Challenges in Lithium Metal Anodes for Solid-State Batteries. ACS Energy Lett., 2020, vol. 5, pp. 922–934. https://dx.doi.org/10.1021/acsenergylett.9b02668
- Knauth P. Inorganic solid Li ion conductors: An overview. Solid State Ionics., 2009, vol. 180, pp. 911–916. https://doi.org/10.1016/j.ssi.2009.03.022
- Quartarone E., and Mustarelli P. Electrolytes for solid-state lithium rechargeable batteries: Recent advances and perspectives. Chem. Soc. Rev., 2011, vol. 40, pp. 2525–2540. https://doi.org/10.1039/C0CS00081G
- Bachman J. C., Muy S., Grimaud A., Chang H.-H., Pour N., Lux S. F., Paschos O., Maglia F., Lupart S., Lamp P., Giordano L., and Shao-Horn Y. Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. Chem. Rev., 2016, vol. 116, pp. 140–162. https://doi.org/10.1021/acs.chemrev.5b00563
- Kamaya N., Homma K., Yamakawa Y., Hirayama M., Kanno R., Yonemura M., Kamiyama T., Kato Y., Hama S., and Kawamoto K. A lithium superionic conductor. Nat. Mater., 2011, vol. 10, pp. 682–686. https://doi.org/10.1038/nmat3066
- Minami T., Hayashi A., and Tatsumisago M. Recent progress of glass and glass-ceramics as solid electrolytes for lithium secondary batteries. Solid State Ionics, 2006, vol. 177, pp. 2715–2720. https://doi.org/10.1016/j.ssi.2006.07.017
- Thangadurai V., and Weppner W. Recent progress in solid oxide and lithium ion conducting electrolytes research. Ionics, 2006, vol. 12, pp. 81–92 https://doi.org/10.1007/s11581-006-0013-7
- Tatsumisago M., Nagao M., and Hayashi A. Recent development of sulfide solid electrolytes and interfacial modification for all-solid-state rechargeable lithium batteries. J. Asian Ceram. Soc., 2013, vol. 1, pp. 17–25. https://doi.org/10.1016/j.jascer.2013.03.005
- Liu D., Zhu W., Feng Z., Guerfi A., Vijh A., and Zaghib K. Recent progress in sulfide-based solid electrolytes for Li-ion batteries. Mat. Sci. Eng. B, 2016, vol. 213, pp. 169–176. https://doi.org/10.1016/j.mseb.2016.03.005
- Wei J., Yang Z., Lu G., Hu X., Li Z., Wang R., and Xu C. Enabling an electron/ion conductive composite lithium anode for solid-state lithium-metal batteries with garnet electrolyte. Energy Storage Mater., 2022, vol. 53, pp. 204–211. https://doi.org/10.1016/j.ensm.2022.08.041
- Han X., Gong Y., Fu K., He X., Hitz G. T., Dai J., Pearse A., Liu B., Wang H., Rubloff G., Mo Y., Thangadurai V., Wachsman E. D., and Hu L. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater., 2017, vol. 16, pp. 572–579. https://doi.org/10.1038/nmat4821
- Zeier W. G. Structural limitations for optimizing garnet-type solid electrolytes: A perspective. Dalton Trans., 2014, vol. 43, pp. 16133–16138. https://doi.org/10.1039/C4DT02162B
- Thangadurai V., Narayanan S., and Pinzaru D. Garnet-type solid-state fast Li ion conductors for Li batteries: Critical review. Chem. Soc. Rev., 2014, vol. 43, pp. 4714–4727. https://doi.org/10.1039/C4CS00020J
- Teng S., Tan J., and Tiwari A. Recent developments in garnet based solid state electrolytes for thin film batteries. Current Opinion in Solid State and Materials Science, 2014, vol. 18, pp. 29–38. https://doi.org/10.1016/j.cossms.2013.10.002
- Ujiie S., Hayashi A., and Tatsumisago M. Preparation and ionic conductivity of (100-x)(0.8Li2S⋅0.2P2S5)⋅xLiI glass–ceramic electrolytes. J. Solid State Electrochem., 2013, vol. 17, pp. 675–680. https://doi.org/10.1007/s10008-012-1900-7
- Rangasamy E., Liu Z.,Gobet M., Pilar K., Sahu G., Zhou W., Wu H., Greenbaum S., and Liang C. An Iodide-Based Li7P2S8I Superionic Conductor. J. Am. Chem. Soc., 2015, vol. 137, pp. 1384–1387. https://doi.org/10.1021/ja508723m
- He Y., Chen W., Zhao Y., Li Y., Lv C., Li H., Yang J., Gao Z., and Luo J. Recent developments and progress of halogen elements in enhancing the performance of all-solid-state lithium metal batteries. Energy Storage Mater., 2022, vol. 49, pp. 19–57. https://doi.org/10.1016/j.ensm.2022.03.043
- Lu Y., Tu Z., and Archer L. A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater., 2014, vol. 13, pp. 961–969. https://doi.org/10.1038/nmat4041
- Keller M., Varzi A., and Passerini S. Hybrid electrolytes for lithium metal batteries. J. Power Sources, 2018, vol. 392, pp. 206–225. https://doi.org/10.1016/j.jpowsour.2018.04.099
- Zhou W., Wang S., Li Y., Xin S., Manthiram A., and Goodenough J. B. Plating a Dendrite-Free Lithium Anode with a Polymer/Ceramic/Polymer Sandwich Electrolyte. J. Am. Chem. Soc., 2016, vol. 138, pp. 9385–9388. https://doi.org/10.1021/jacs.6b05341
- Zhang J., Bai Y., Sun X.-G., Li Y., Guo B., Chen J., Veith G. M., Hensley D. K., Paranthaman M. P., Goodenough J. B., and Dai S. Superior Conductive Solid-like Electrolytes: Nanoconfining Liquids within the Hollow Structures. Nano Lett., 2015, vol. 15, pp. 3398–3402. https://doi.org/10.1021/acs.nanolett.5b00739
- Zhou D., Liu R., He Y.-B., Li F., Liu M., Li B., Yang Q.-H., Cai Q., and Kang F. SiO2 Hollow Nanosphere-Based Composite Solid Electrolyte for Lithium Metal Batteries to Suppress Lithium Dendrite Growth and Enhance Cycle Life. Adv. Energy Mater., 2016, vol. 6, article no. 1502214. https://doi.org/10.1002/aenm.201502214
- Li T., Zhang X.-Q., Shi P., and Zhang Q. Fluorinated Solid-Electrolyte Interphase in High-Voltage Lithium Metal Batteries. Joule, 2019, vol. 3, pp. 2647–2661. https://doi.org/10.1016/j.joule.2019.09.022
- Yan C., Li H.-R., Chen X., Zhang X.-Q., Cheng X.-B., Xu R., Huang J.-Q., and Zhang Q. Regulating the Inner Helmholtz Plane for Stable Solid Electrolyte Interphase on Lithium Metal Anodes. J. Am. Chem. Soc., 2019, vol. 141, pp. 9422–9429. https://doi.org/10.1021/jacs.9b05029
- Wu B., Lochala J., Taverne T., and Xiao J. The Interplay between Solid Electrolyte Interface (SEI) and Dendritic Lithium Growth. Nano Energy, 2017, vol. 40, pp. 34–41. https://dx.doi.org/10.1016/j.nanoen.2017.08.005
- Cao X., Ren X., Zou L., Engelhard M. H., Huang W., Wang H., Matthews B. E., Lee H., Niu C., Arey B. W., Cui Y., Wang C., Xiao J., Liu J., Xu W., and Zhang J. G. Monolithic solid–electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization. Nat. Energy, 2019, vol. 4, pp. 796–805. https://doi.org/10.1038/s41560-019-0464-5
- Cheng X.-B., and Zhang Q. Dendrite-free lithium metal anodes: Stable solid electrolyte interphases for high-efficiency batteries. J. Mater. Chem. A, 2015, vol. 3, pp. 7207–7209. https://doi.org/10.1039/C5TA00689A
- Bieker G., Winter M., and Bieker P. Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode. Phys. Chem. Chem. Phys., 2015, vol. 17, pp. 8670–8679. https://doi.org/10.1039/c4cp05865h
- Cheng X.-B., Zhang R., Zhao C.-Z., Wei F., Zhang J.-G., and Zhang Q. A Review of Solid Electrolyte Interphases on Lithium Metal Anode. Adv. Sci., 2016, vol. 3, article no. 1500213. https://doi.org/10.1002/advs.201500213
- Cheng X.-B., Zhao C.-Z., Yao Y.-X., Liu H., and Zhang Q. Recent Advances in Energy Chemistry between Solid-State Electrolyte and Safe Lithium-Metal Anodes. Chem., 2019, vol. 5, pp. 74–96. https://doi.org/10.1016/j.chempr.2018.12.002
- Fan X., Chen L., Borodin O., Ji X., Chen J., Hou S., Deng T., Zheng J., Yang C., Liou S., Amine K., Xu K., and Wang C. Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nat. Nanotechnol., 2018, vol. 13, pp. 715–722. https://doi.org/10.1038/s41565-018-0183-2
- Suo L., Xue W., Gobet M., Greenbaum S. G., Wang C., Chen Y., Yang W., Lie Y., and Li J. Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries. Proc. Natl. Acad. Sci. USA, 2018, vol. 115, pp. 1156–1161. https://doi.org/10.1073/pnas.1712895115
- Lang J., Long Y., Qu J., Luo X., Wei H., Huang K., Zhang H., Qi L., Zhang Q., Li Z., and Wu H. One-pot Solution Coating of High Quality LiF Layer to Stabilize Li Metal Anode. Energy Storage Mater., 2019, vol. 16, pp. 85–90. https://doi.org/10.1016/j.ensm.2018.04.024
- Zhang Z., Hu L., Wu H., Weng W., Koh M., Redfern P. C., Curtiss L. A., and Amine K. Fluorinated electrolytes for 5 V lithium-ion battery chemistry. Energy Environ. Sci., 2013, vol. 6, pp. 1806–1810. https://doi.org/10.1039/c3ee24414h
- Fan X., Ji X., Chen L., Chen J., Deng T., Han F., Yue J., Piao N., Wang R., Zhou X., Xiao X., Chen L., and Wang C. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents. Nat. Energy, 2019, vol. 4, pp. 882–890. https://doi.org/10.1038/s41560-019-0474-3
- Markevich E., Salitra G., Chesneau F., Schmidt M., and Aurbach D. Very Stable Lithium Metal Stripping-Plating at a High Rate and High Areal Capacity in Fluoroethylene Carbonate-Based Organic Electrolyte Solution. ACS Energy Lett., 2017, vol. 2, pp. 1321–1326. https://doi.org/10.1021/acsenergylett.7b00300
- Markevich E., Salitra G., and Aurbach D. Fluoroethylene Carbonate as an Important Component for the Formation of an Effective Solid Electrolyte Interphase on Anodes and Cathodes for Advanced Li-Ion Batteries. ACS Energy Lett., 2017, vol. 2, pp. 1337–1345. https://doi.org/10.1021/acsenergylett.7b00163
- Zhang X.-Q., Cheng X.-B., Chen X., Yan C., and Zhang Q. Fluoroethylene Carbonate Additives to Render Uniform Li Deposits in Lithium Metal Batteries. Adv. Funct. Mater., 2017, vol. 27, article no. 1605989. https://doi.org/10.1002/adfm.201605989
- Li Y., Huang W., Li Y., Pei A., Boyle D. T., and Cui Y. Correlating Structure and Function of Battery Interphases at Atomic Resolution Using Cryoelectron Microscopy. Joule, 2018, vol. 2, pp. 2167–2177. https://doi.org/10.1016/j.joule.2018.08.004
- Li Y., Li Y., Pei A., Yan K., Sun Y., Wu C.-L., Joubert L.-M., Chin R., Koh A. L., Yu Y., Perrino J., Butz B., Chu S., and Cui Y. Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy. Science, 2017, vol. 358, pp. 506–510. https://doi.org/10.1126/science.aam6014
- Park S.-J., Hwang J.-Y., Yoon C. S., Jung H.-G., and Sun Y.-K. Stabilization of Lithium-Metal Batteries Based on the in Situ Formation of a Stable Solid Electrolyte Interphase Layer. ACS Appl. Mater. Interfaces, 2018, vol. 10, pp. 17985–17993. https://doi.org/10.1021/acsami.8b04592
- Su C.-C., He M., Amine R., Chen Z., Sahore R., Rago N. D., and Amine K. Cyclic Carbonate for Highly Stable Cycling of High Voltage Lithium Metal Batteries. Energy Storage Mater., 2019, vol. 17, pp. 284–292. https://doi.org/10.1016/j.ensm.2018.11.003
- Zhang X.-Q., Chen X., Hou L.-P., Li B.-Q., Cheng X.-B., Huang J.-Q., and Zhang Q. Regulating Anions in the Solvation Sheath of Lithium Ions for Stable Lithium Metal Batteries. ACS Energy Lett., 2019, vol. 4, pp. 411–416. https://doi.org/10.1021/acsenergylett.8b02376
- Zhang X.-Q., Chen X., Cheng X.-B., Li B.-Q., Shen X., Yan C., Huang J.-Q., and Zhang Q. Highly Stable Lithium Metal Batteries Enabled by Regulating the Li+ Solvation in Nonaqueous Electrolyte. Angew. Chem. Int. Ed., 2018, vol. 57, pp. 5301–5305. https://doi.org/10.1002/anie.201801513
- Xiao L., Zeng Z., Liu X., Fang Y., Jiang X., Shao Y., Zhuang L., Ai X., Yang H., Cao Y., and Liu J. Stable Li Metal Anode with “Ion-Solvent-Coordinated” Nonflammable Electrolyte for Safe Li Metal Batteries. ACS Energy Lett., 2019, vol. 4, pp. 483–488. https://doi.org/10.1021/acsenergylett.8b02527
- Li W., Yao H., Kai Yan, Zheng G., Liang Z., Chiang Y.-M., and Cui Y. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun., 2015, vol. 6, article no. 7436. https://doi.org/10.1038/ncomms8436
- Aurbach D., Pollak E., Elazari R., Salitra G., Kelley C. S., and Affinito J. On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li–Sulfur Batteries. J. Electrochem. Soc., 2009, vol. 156, pp. A69–A702. https://doi.org/10.1149/1.3148721
- Xiong S., Xie K., Diao Y., and Hong X. Properties of surface film on lithium anode with LiNO3 as lithium salt in electrolyte solution for lithium–sulfur batteries. Electrochim. Acta, 2012, vol. 83, pp. 78–86. https://doi.org/10.1016/j.electacta.2012.07.118
- Fan X., Chen L., Ji X., Deng T., Hou S., Chen J., Zheng J., Wang F., Jiang J., Xu K., and Wang C. Highly Fluorinated Interphases Enable High-Voltage Li-Metal Batteries. Chem., 2018, vol. 4, pp. 174–185. https://doi.org/10.1016/j.chempr.2017.10.017
- Shi P., Zhang L., Xiang H., Liang X., Sun Y., and Xu W. Lithium Difluorophosphate as a Dendrite-Suppressing Additive for Lithium Metal Batteries. ACS Appl. Mater. Interfaces, 2018, vol. 10, pp. 22201–22209. https://doi.org/10.1021/acsami.8b05185
- Jeong S.-K., Seo H.-Y., Kim D.-H., Han H.-K., Kim J.-G., Lee Y. B., Iriyama Y., Abe T., and Ogumi Z. Suppression of dendritic lithium formation by using concentrated electrolyte solutions. Electrochem. Commun., 2008, vol. 10, pp. 635–638. https://doi.org/10.1016/j.elecom.2008.02.006
- Yu L., Chen S., Lee H., Zhang L., Engelhard M. H., Li Q., Jiao S., Liu J., Xu W., and Zhang J.-G. A Localized High Concentration Electrolyte with Optimized Solvents and LiDFOB Additive for Stable Lithium Metal Batteries. ACS Energy Lett., 2018, vol. 3, pp. 2059–2067. https://doi.org/10.1021/acsenergylett.8b00935
- Qian J., Adams B. D., Zheng J., Xu W., Henderson W. A., Wang J., Bowden M. E., Xu S., Hu J., and Zhang J.-G. Anode-Free Rechargeable Lithium Metal Batteries. Adv. Funct. Mater., 2016, vol. 26, pp. 7094–7102. https://doi.org/10.1002/adfm.201602353
- Ma Q., Fang Z., Liu P., Ma J., Qi X., Feng W., Nie J., Hu Y.-S., Li H., Huang X., Chen L., and Zhou Z. Improved Cycling Stability of Lithium-Metal Anode with Concentrated Electrolytes Based on Lithium (Fluorosulfonyl)(trifluoromethanesulfonyl)imide. ChemElectroChem, 2016, vol. 3, pp. 531–536. https://dx.doi.org/10.1002/celc.201500520
- Lu Y., Tu Z., and Archer L. A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater., 2014, vol. 13, pp. 961–969. https://doi.org/10.1038/NMAT4041
- Liu Q.-C., Xu J.-J., Yuan S., Chang Z.-W., Xu D., Yin Y.-B., Li L., Zhong H.-X., Jiang Y.-S., Yan J.-M., and Zhang X.-B. Artificial Protection Film on Lithium Metal Anode toward Long-Cycle-Life Lithium–Oxygen Batteries. Adv. Mater., 2015, vol. 27, pp. 5241–5247. https://doi.org/10.1002/adma.201501490
- Yan C., Cheng X.-B., Tian Y., Chen X., Zhang X.-Q., Li W.-J., Huang J.-Q., and Zhang Q. Dual-Layered Film Protected Lithium Metal Anode to Enable Dendrite-Free Lithium Deposition. Adv. Mater., 2018, vol. 30, article no. 1707629. https://doi.org/10.1002/adma.201707629
- Kim M. S., Ryu J.-H., Deepika, Lim Y. R., Nah I. W., Lee K.-R., Archer L. A., and Cho W. I. Langmuir–Blodgett artificial solid-electrolyte interphases for practical lithium metal batteries. Nat. Energy, 2018, vol. 3, pp. 889–898. https://doi.org/10.1038/s41560-018-0237-6
- Li N.-W., Yin Y.-X., Yang C.-P., and Guo Y.-G. An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes. Adv. Mater., 2016, vol. 28, pp. 1853–1858. https://doi.org/10.1002/adma.201504526
- Thompson R. S., Schroeder D. J., López C. M., Neuhold S., and Vaughey J. T. Stabilization of lithium metal anodes using silane-based coatings. Electrochem. Commun., 2011, vol. 13, pp. 1369–1372. https://doi.org/10.1016/j.elecom.2011.08.012
- Cheng X.-B., Yan C., Chen X., Guan C., Huang J.-Q., Peng H.-J., Zhang R., Yang S.-T., and Zhang Q. Implantable Solid Electrolyte Interphase in Lithium-Metal Batteries. Chem., 2017, vol. 2, pp. 258–270. https://dx.doi.org/10.1016/j.chempr.2017.01.003
- Chen D., Huang S., Zhong L., Wang S., Xiao M., Han D., and Meng Y. In Situ Preparation of Thin and Rigid COF Film on Li Anode as Artificial Solid Electrolyte Interphase Layer Resisting Li Dendrite Puncture. Adv. Funct. Mater., 2020, vol. 30, article no. 1907717. https://doi.org/10.1002/adfm.201907717
- Wang Z., Wang Y., Zhang Z., Chen X., Lie W., He Y.-B., Zhou Z., Xia G., and Guo Z. Building Artificial Solid-Electrolyte Interphase with Uniform Intermolecular Ionic Bonds toward Dendrite-Free Lithium Metal Anodes. Adv. Funct. Mater., 2020, vol. 30, article no. 2002414. https://doi.org/10.1002/adfm.202002414
- Zhai P., Wei Y., Xiao J., Liu W., Zuo J., Gu X., Yang W., Cui S., Li B., Yang S., and Gong Y. In Situ Generation of Artificial Solid-Electrolyte Interphases on 3D Conducting Scaffolds for High-Performance Lithium-Metal Anodes. Adv. Energy Mater., 2020, vol. 10, article no. 1903339. https://doi.org/10.1002/aenm.201903339
- Ma L., Kim M. S., and Archer L. A. Stable Artificial Solid Electrolyte Interphases for Lithium Batteries. Chem. Mater., 2017, vol. 29, pp. 4181–4189. https://doi.org/10.1021/acs.chemmater.6b03687
- Budi A., Basile A., Opletal G., Hollenkamp A. F., Best A. S., Rees R. J., Bhatt A. I., O’Mullane A. P., and Russo S. P. Study of the Initial Stage of Solid Electrolyte Interphase Formation upon Chemical Reaction of Lithium Metal and N-Methyl-N-Propyl-Pyrrolidinium-Bis(Fluorosulfonyl)Imide. J. Phys. Chem. C, 2012, vol. 116, pp. 19789–19797. https://doi.org/10.1021/jp304581g
- Basile A., Bhatt A. I., and O’Mullane A. P. Stabilizing lithium metal using ionic liquids for long-lived batteries. Nat. Commun., 2016, vol. 7, article no. 11794. https://doi.org/10.1038/ncomms11794
- Gao Y., Rojas T., Wang K., Liu S., Wang D., Chen T., Wang H., Ngo A. T., and Wang D. Low-temperature and high-rate-charging lithium metal batteries enabled by an electrochemically active monolayer-regulated interface. Nat. Energy, 2020, vol. 5, pp. 534–542. https://doi.org/10.1038/s41560-020-0640-7
- Neudecker B. J., Dudney N. J., and Bates J. B. “Lithium-Free” Thin-Film Battery with In Situ Plated Li Anode. J. Electrochem. Soc., 2000, vol. 147, pp. 517–523. https://doi.org/10.1149/1.1393226
- Nanda S., Gupta A., and Manthiram A. Anode-Free Full Cells: A Pathway to High-Energy Density Lithium-Metal Batteries. Adv. Energy Mater., 2021, vol. 11, article no. 2000804. https://doi.org/10.1002/aenm.202000804
- Xie Z., Wu Z., An X., Yue X., Wang J., Abudula A., and Guan G. Anode-free rechargeable lithium metal batteries: Progress and prospects. Energy Storage Mater., 2020, vol. 32, pp. 386–401. https://doi.org/10.1016/j.ensm.2020.07.004
- Tian Y., An Y., Wei C., Jiang H., Xiong S., Feng J., and Qian Y. Recently advances and perspectives of anode-free rechargeable batteries. Nano Energy, 2020, vol. 78, article no. 105344. https://doi.org/10.1016/j.nanoen.2020.105344
- Liu S., Jiao K., and Yan J. Prospective strategies for extending long-term cycling performance of anode-free lithium metal batteries. Energy Storage Mater., 2023, vol. 54, pp. 689–712. https://doi.org/10.1016/j.ensm.2022.11.021
- Wu B., Chen C., Raijmakers L. H. J., Liu J., Danilov D. L., Eichel R.-A., and Notten P. H. L. Li-growth and SEI engineering for anode-free Li-metal rechargeable batteries: A review of current advances. Energy Storage Mater., 2023, vol. 57, pp. 508–539. https://doi.org/10.1016/j.ensm.2023.02.036
- Jo C.-H., Sohn K.-S., and Myung S.-T. Feasible approaches for anode-free lithium-metal batteries as next generation energy storage systems. Energy Storage Mater., 2023, vol. 57, pp. 471–496. https://doi.org/10.1016/j.ensm.2023.02.040
- Heubner C., Maletti S., Auer H., Hüttl J., Voigt K., Lohrberg O., Nikolowski K., Partsch M., and Michaelis A. From Lithium-Metal toward Anode-Free Solid-State Batteries: Current Developments, Issues, and Challenges. Adv. Funct. Mater., 2021, vol. 31, article no. 2106608. https://doi.org/10.1002/adfm.202106608
- Tong Z., Bazri B., Hu S.-F., and Liu R. S. Interfacial chemistry in anode-free batteries: Challenges and strategies. J. Mater. Chem. A, 2021, vol. 9, pp. 7396–7406. https://doi.org/10.1039/d1ta00419k
- Xia H., Wang Y., and Fu Z. Growing cuprite nanoparticles on copper current collector toward uniform Li deposition for anode-free lithium batteries. Appl. Surf. Sci., 2023, vol. 617, article no. 156529. https://doi.org/10.1016/j.apsusc.2023.156529
- Zhang J., Zhang H., Deng L., Yang Y., Tan L., Niu X., Chen Y., Zeng L., Fan X., and Zhu Y. An additive-enabled ether-based electrolyte to realize stable cycling of high-voltage anode-free lithium metal batteries. Energy Storage Mater., 2023, vol. 54, pp. 450–460. https://doi.org/10.1016/j.ensm.2022.10.052
- Hagos T. M., Berhe G. B., Hagos T. T., Bezabh H. K., Abrha L. H., Beyene T. T., Huang C.-J., Yang Y.-W., Su W.-N., Dai H., and Hwang B.-J. Dual electrolyte additives of potassium hexafluorophosphate and tris(trimethylsilyl) phosphite for anode-free lithium metal batteries. Electrochim. Acta, 2019, vol. 316, pp. 52–59. https://doi.org/10.1016/j.electacta.2019.05.061
- Hagos T. T., Su W.-N., Huang C.-J., Thirumalraj B., Chiu S.-F., Abrha L. H., Hagos T. M., Bezabh H. K., Berhe G. B., Tegegne W. A., Cherng J.-Y., Yang Y.-W., and Hwang B.-J. Developing high-voltage carbonate-ether mixed electrolyte via anode-free cell configuration. J. Power Sources, 2020, vol. 461, article no. 228053. https://doi.org/10.1016/j.jpowsour.2020.228053
- Wang M. J., Carmona E., Gupta A., Albertus P., and Sakamoto J. Enabling “lithium-free” manufacturing of pure lithium metal solid-state batteries through in situ plating. Nat. Commun., 2020, vol. 11, pp. 5201–5209. https://doi.org/10.1038/s41467-020-19004-4
- Assegie A. A., Cheng J.-H., Kuo L.-M., Su W.-N., and Hwang B.-J. Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery. Nanoscale, 2018, vol. 10, pp. 6125–6138. https://doi.org/10.1039/C7NR09058G
- Alvarado J., Schroeder M. A., Pollard T. P., Wang X., Lee J. Z., Zhang M., Wynn T., Ding M., Borodin O., Ying Shirley Meng Y. S., and Xu K. Bisalt Ether Electrolytes: A Pathway Towards Lithium Metal Batteries with Ni-rich Cathodes. Energy Environ. Sci., 2019, vol. 12, pp. 780–794. https://doi.org/10.1039/C8EE02601G
- Umh H. N., Park J., Yeo J., Jung S., Nam I., and Yi J. Lithium metal anode on a copper dendritic superstructure. Electrochem. Commun., 2019, vol. 99, pp. 27–31. https://doi.org/10.1016/j.elecom.2018.12.015
- Chen J., Xiang J., Chen X., Yuan L., Li Z., and Huang Y. Li2S-Based Anode-Free Full Batteries with Modified Cu Current Collector. Energy Storage Mater., 2020, vol. 30, pp. 179–186. https://doi.org/10.1016/j.ensm.2020.05.009
- Chen W., Salvatierra R. V., Ren M., Chen J., Stanford M. G., and Tour J. M. Laser-Induced Silicon Oxide for Anode-Free Lithium Metal Batteries. Adv. Mater., 2020, vol. 32, article no. 2002850. https://doi.org/10.1002/adma.202002850
- Niu C., Lee H., Chen S., Li Q., Du J., Xu W., Zhang J.-G, Whittingham M. S., Xiao J., and Liu J. High-energy lithium metal pouch cells with limited anode swelling and long stable cycles. Nat. Energy, 2019, vol. 4, pp. 551–559. https://doi.org/10.1038/s41560-019-0390-6
- Chang Z., Yang H., Zhu X., He P., and Zhou H. A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments. Nat. Commun., 2022, vol. 13, pp. 1510–1521. https://doi.org/10.1038/s41467-022-29118-6
Поступила в редакцию:
22.05.2023
Принята к публикации:
20.06.2023
Опубликована:
30.06.2023