ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Kulova T. L., Skundin A. M. Renaissance of lithium electrode. Electrochemical Energetics, 2023, vol. 23, iss. 2, pp. 57-79. DOI: 10.18500/1608-4039-2023-23-2-57-79, EDN: KNFQNY

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 169)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
544.6:621.355
EDN: 
KNFQNY

Renaissance of lithium electrode

Autors: 
Kulova Tatiana L'vovna, A. N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS
Skundin Alexander Mordukhaevich, A. N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS
Abstract: 

The publications of the recent 15 years devoted to using lithium metal in rechargeable batteries are analyzed and their short overview is presented.

Acknowledgments: 
The research was carried out with the financial support of the Ministry of Science and Higher Education of the Russian Federation.
Reference: 
  1. Xu W., Wang J., Ding F., Chen X., Nasybulin E., Zhangad Y., and Zhang J.-G. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci., 2014, vol. 7, pp. 513–537. https://doi.org/10.1039/C3EE40795K
  2. Liu J., Bao Z., Cui Y., Dufek E. J., Goodenough J. B., Khalifah P., Li Q., Liaw B. Y., Liu P., Manthiram A., Meng Y. S., Subramanian V. R., Toney M. F., Viswanathan V. V., Whittingham M. S., Xiao J., Xu W., Yang J., Yang X.-Q., and Zhang J.-G. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy, 2019, vol. 4, pp. 180–186. https://doi.org/10.1038/s41560-019-0338-x
  3. Lin D., Liu Y., and Cui Y. Reviving the lithium metal anode for high-energy batteries. Nature Nanotech., 2017, vol. 12, pp. 194–206. https://doi.org/10.1038/nnano.2017.16
  4. Li Y., Li Y., Zhang L., Tao H., Li Q., Zhang J., and Yang X. Lithiophilicity: The key to efficient lithium metal anodes for lithium batteries. J. Energy Chem., 2023, vol. 77, pp. 123–136. https://doi.org/10.1016/j.jechem.2022.10.026
  5. Ghazi Z. A., Sun Z., Sun C., Qi F., An B., Li F., and Cheng H.-M. Key Aspects of Lithium Metal Anodes for Lithium Metal Batteries. Small, 2019, vol. 15, article no. 1900687. https://doi.org/10.1002/smll.201900687
  6. Wang H., Yu Z., Kong X., Kim S. C., Boyle D. T., Qin J., Bao Z., and Cui Y. Liquid electrolyte: The nexus of practical lithium metal batteries. Joule, 2022, vol. 6, pp. 588–616. https://doi.org/10.1016/j.joule.2021.12.018
  7. Wei C., Zhang Y., Tian Y., Tan L., An Y., Qian Y., Xi B., Xiong S., Feng J., Qian Y. Design of safe, long-cycling and high-energy lithium metal anodes in all working conditions: Progress, challenges and perspectives. Energy Storage Mater., 2021, vol. 38, pp. 157–189. https://doi.org/10.1016/j.ensm.2021.03.006
  8. Cheng X.-B., Zhang R., Zhao C.-Z., and Zhang Q. Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chem. Rev., 2017, vol. 117, pp. 10403–10473. https://doi.org/10.1021/acs.chemrev.7b00115
  9. Guo Y., Li H., and Zhai T. Reviving Lithium-Metal Anodes for Next-Generation High-Energy Batteries. Adv. Mater., 2017, vol. 29, article no. 1700007. https://doi.org/10.1002/adma.201700007
  10. Sun Y., Liu N., and Cui Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat. Energy, 2016, vol. 1, article no. 16071. https://doi.org/10.1038/nenergy.2016.71
  11. Albertus P., Babinec S., Litzelman S., and Newman A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy, 2018, vol. 3, pp. 16–21. https://doi.org/10.1038/s41560-017-0047-2
  12. Varzi A., Thanner K., Scipioni R., Lecce D. D., Hassoun J., Dörfler S., Altheus H., Kaskel S., Prehal C., and Freunberger S. A. Current status and future perspectives of lithium metal batteries. J. Power Sources, 2020, vol. 480, article no. 228803. https://doi.org/10.1016/j.jpowsour.2020.228803
  13. Lin D., Liu Y., Pei A., and Cui Y. Nanoscale perspective: Materials designs and understandings in lithium metal anodes. Nano Res., 2017, vol. 10, pp. 4003–4026. https://doi.org/10.1007/s12274-017-1596-1
  14. Xu X., Wang S., Hao Wang H., Hu C., Jin Y., Liu J., and Yan H. Recent progresses in the suppression method based on the growth mechanism of lithium dendrite. J. Energy Chem., 2018, vol. 27, pp. 513–527. https://doi.org/10.1016/j.jechem.2017.11.010
  15. Zhang X.-Q., Cheng X.-B., and Zhang Q. Advances in Interfaces between Li Metal Anode and Electrolyte. Adv. Mater. Interfaces, 2017, vol. 5, article no. 1701097. https://doi.org/10.1002/admi.201701097
  16. Mauger A., Armand M., Julien C. M., Zaghib K. Challenges and issues facing lithium metal for solid-state rechargeable batteries. J. Power Sources, 2017, vol. 353, pp. 333–342. https://dx.doi.org/10.1016/j.jpowsour.2017.04.018
  17. Li S., Jiang M., Xie Y., Xu H., Jia J., and Li J. Developing High-Performance Lithium Metal Anode in Liquid Electrolytes: Challenges and Progress. Adv. Mater., 2018, vol. 30, article no. 1706375. https://doi.org/10.1002/adma.201706375
  18. Li B., Wang Y., and Yang S. A Material Perspective of Rechargeable Metallic Lithium Anodes. Adv. Energy Mater., 2018, vol. 8, article no. 1702296. https://doi.org/10.1002/aenm.201702296
  19. Chen S., Niu C., Lee H., Li Q., Yu L., Xu W., Zhang J., Dufek E. J., Whittingham M. S., Meng S., Xiao J., and Liu J. Critical Parameters for Evaluating Coin Cells and Pouch Cells of Rechargeable Li-Metal Batteries. Joule, 2019, vol. 3, pp. 1094–1105. https://doi.org/10.1016/j.joule.2019.02.004
  20. Rao X., Lou Y., Zhong S., Wang L., Li B., Xiao Y., Peng W., Zhong X., and Huang J. Strategies for Dendrite-Free lithium metal Anodes: A Mini-review. J. Electroanalyt. Chem., 2021, vol. 897, article no. 115499. https://doi.org/10.1016/j.jelechem.2021.115499
  21. Thirumalraj B., Hagos T. T., Huang C.-J., Teshager M. A., Cheng J.-H., Su W.-N., and Hwang B.-J. Nucleation and Growth Mechanism of Lithium Metal Electroplating. J. Am. Chem. Soc., 2019, vol. 141, pp. 18612–18623. https://doi.org/10.1021/jacs.9b10195
  22. Pei A., Zheng G., Shi F., Li Y., and Cui Y. Nanoscale Nucleation and Growth of Electrodeposited Lithium Metal. Nano Lett., 2017, vol. 17, pp. 1132–1139. https://doi.org/10.1021/acs.nanolett.6b04755
  23. Gireaud L., Grugeon S., Laruelle S., Yrieix B., and Tarascon J.-M. Lithium metal stripping/plating mechanisms studies: A metallurgical approach. Electrochem. Commun., 2006, vol. 8, pp. 1639–1649. https://doi.org/10.1016/j.elecom.2006.07.037
  24. Cao W., Li Q., Yu X., and Li H. Controlling Li deposition below the interface. eScience, 2022, vol. 2, pp. 47–78. https://doi.org/10.1016/j.esci.2022.02.002
  25. Chen X.-R., Zhao B.-C., Yan C., and Zhang Q. Review on Li Deposition in Working Batteries: From Nucleation to Early Growth. Adv. Mater., 2021, vol. 33, article no. 2004128. https://doi.org/10.1002/adma.202004128
  26. Wang D., Zhang W., Zheng W., Cui X., Rojo T., and Zhang Q. Towards High-Safe Lithium Metal Anodes: Suppressing Lithium Dendrites via Tuning Surface Energy. Adv. Sci., 2017, vol. 4, article no. 1600168. https://doi.org/10.1002/advs.201600168
  27. Aurbach D., and Cohen Y. The Application of Atomic Force Microscopy for the Study of Li Deposition Processes. J. Electrochem. Soc., 1996, vol. 143, pp. 3525–3532. https://doi.org/10.1149/1.1837248
  28. Aurbach D., Zinigrad E., Cohen Y., and Teller H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics, 2002, vol. 148, pp. 405–416. https://doi.org/10.1016/S0167-2738(02)00080-2
  29. Jana A., and Garcı́a R. E. Lithium dendrite growth mechanisms in liquid electrolytes. Nano Energy, 2017, vol. 41, pp. 552–565. https://dx.doi.org/10.1016/j.nanoen.2017.08.056
  30. Barai P., Higa K., and Srinivasan V. Lithium dendrite growth mechanisms in polymer electrolytes and prevention strategies. Phys. Chem. Chem. Phys., 2017, vol. 19, pp. 20493–20505. https://doi.org/10.1039/c7cp03304d
  31. Ely D. R., and R. Edwin Garcı́a R. E. Heterogeneous Nucleation and Growth of Lithium Electrodeposits on Negative Electrodes. J. Electrochem. Soc., 2013, vol. 160, pp. A662–A668. https://doi.org/10.1149/1.057304jes
  32. Hao F., Verma A., Mukherjee P. P. Electrodeposition stability of metal electrodes. Energy Storage Mater., 2019, vol. 20, pp. 1–6. https://doi.org/10.1016/j.ensm.2019.05.004
  33. Nishikawa K., Mori T., Nishida T., Fukunaka Y., Rosso M., and Hommae T. In Situ Observation of Dendrite Growth of Electrodeposited Li Metal. J. Electrochem. Soc., 2010, vol. 157, pp. A1212–A1217. https://doi.org/10.1149/1.3486468
  34. Zheng J., Engelhard M. H., Mei D., Jiao S., Polzin B. J., Zhang J.-G., and Xu W. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nat. Energy, 2017, vol. 2, article no. 17012. https://doi.org/10.1038/nenergy.2017.1
  35. Yan K., Wang J., Zhao S., Zhou D., Sun B., Cui Y., and Wang G. Temperature-dependent Nucleation and Growth of Dendrite-Free Lithium Metal Anodes. Angew. Chem. Int. Ed., 2019, vol. 58, pp. 11364–11368. https://doi.org/10.1002/anie.201905251
  36. Akolkar R. Modeling dendrite growth during lithium electrodeposition at sub-ambient temperature. J. Power Sources, 2014, vol. 246, pp. 84–89. https://dx.doi.org/10.1016/j.jpowsour.2013.07.056
  37. Yan K., Lu Z., Lee H.-W., Xiong F., Hsu P.-C., Li Y., Zhao J., Chu S., and Cui Y. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy, 2016, vol. 1, article no. 16010. https://doi.org/10.1038/nenergy.2016.1
  38. Pathak R., Chen K., Wu F., Mane A. U., Bugga R. V., Elam J. W., Qiao Q., and Zhou Y. Advanced strategies for the development of porous carbon as a Li host/current collector for lithium metal batteries. Energy Storage Mater., 2021, vol. 41, pp. 448–465. https://doi.org/10.1016/j.ensm.2021.06.015
  39. Su X., Dogan F., Ilavsky J., Maroni V. A., Gosztola D. J., and Lu W. Mechanisms for Lithium Nucleation and Dendrite Growth in Selected Carbon Allotropes. Chem. Mater., 2017, vol. 29, pp. 6205–6213. https://doi.org/10.1021/acs.chemmater.7b00072
  40. Meyerson M. L., Sheavly J. K., Dolocan A., Griffin M. P., Pandit A. H., Rodriguez R., Stephens R. M., Bout D. A. V., Heller A., and Mullins C. B. The effect of local lithium surface chemistry and topography on solid electrolyte interphase composition and dendrite nucleation. J. Mater. Chem. A, 2019, vol. 7, pp. 14882–14894. https://doi.org/10.1039/c9ta03371h
  41. Chandrashekar S., Trease N. M., Chang H. J., Du L.-S., Grey C. P., and Jerschow. A 7Li MRI of Li batteries reveals location of microstructural lithium. Nat. Mater., 2012, vol. 11, pp. 311–315. https://doi.org/10.1038/nmat3246
  42. Wang X., Zeng W., Hong L., Xu W., Yang H., Wang F., Duan H., Tang M., and Jiang H. Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates. Nat. Energy, 2018, vol. 3, pp. 227–235. https://doi.org/10.1038/s41560-018-0104-5
  43. Steiger J., Kramer D., and Mönig R. Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium. J. Power Sources, 2014, vol. 261, pp. 112–119. https://dx.doi.org/10.1016/j.jpowsour.2014.03.029
  44. Bai P., Li J., Brushetta F. R., and Bazant M. Z. Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ. Sci., 2016, vol. 9, pp. 3221–3229. https://doi.org/10.1039/C6EE01674J
  45. Kim W.-S., and Yoon W.-Y. Observation of dendritic growth on Li powder anode using optical cell. Electrochim. Acta, 2004, vol. 50, pp. 541–545. https://doi.org/10.1016/j.electacta.2004.03.066
  46. Wang Y., Tan J., Li Z., Ma L., Liu Z., Ye M., and Shen J. Recent progress on enhancing the Lithiophilicity of hosts for dendrite-free lithium metal batteries. Energy Storage Mater., 2022, vol. 53, pp. 156–182. https://doi.org/10.1016/j.ensm.2022.09.006
  47. Hu Z., Li Z., Xia Z., Jiang T., Wang G., Sun J., Sun P., Yan C., and Zhang L. PECVD-Derived Graphene Nanowall/Lithium Composite Anodes towards Highly Stable Lithium Metal Batteries. Energy Storage Mater., 2019, vol. 22, pp. 29–39. https://doi.org/10.1016/j.ensm.2018.12.020
  48. Chen X., Chen X.-R., Hou T.-Z., Li B.-Q., Cheng X.-B., Zhang R., and Zhang Q. Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes. Sci. Adv., 2019, vol. 5, article no. eaau7728. https://doi.org/10.1126/sciadv.aau7728
  49. Hou Z., Zhang J., Wang W., Chen Q., Li B., and Li C. Towards high-performance lithium metal anodes via the modification of solid electrolyte interphases. J. Energy Chem., 2020, vol. 45, pp. 7–17. https://doi.org/10.1016/j.jechem.2019.09.028
  50. Liu S., Xia X., Zhong Y., Deng S., Yao Z., Zhang L., Cheng X.-B., Wang X., Zhang Q., and Tu J. 3D TiC/C Core/Shell Nanowire Skeleton for Dendrite-Free and Long-Life Lithium Metal Anode. Adv. Energy Mater., 2017, vol. 8, article no. 1702322. https://doi.org/10.1002/aenm.201702322
  51. Zhang R., Chen X.-R., Chen X., Cheng X.-B., Zhang X.-Q., Yan C., and Zhang Q. Lithiophilic Sites in Doped Graphene Guide Uniform Lithium Nucleation for Dendrite-Free Lithium Metal Anodes. Angew. Chem. Int. Ed., 2017, vol. 56, pp. 7764–7768. https://doi.org/10.1002/anie.201702099
  52. Yue X.-Y., Wang W.-W., Wang Q.-C., Meng J.-K., Zhang Z.-Q., Wu X.-J., Yang X.-Q., and Zhou Y.-N. CoO nanofiber decorated nickel foams as lithium dendrite suppressing host skeletons for high energy lithium metal batteries. Energy Storage Mater., 2018, vol. 14, pp. 335–344. https://doi.org/10.1016/j.ensm.2018.05.017
  53. Yang C.-P., Yin Y.-X., Zhang S.-F., Li N.-W., and Guo Y.-G. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun., 2015, vol. 6, article no. 8058. https://doi.org/10.1038/ncomms9058
  54. Yun Q., He Y.-B., Lv W., Zhao Y., Li B., Kang F., and Yang Q.-H. Chemical Dealloying Derived 3D Porous Current Collector for Li Metal Anodes. Adv. Mater., 2016, vol. 28, pp. 6932–6939. https://doi.org/10.1002/adma.201601409
  55. Ye H., Zheng Z.-J., Yao H.-R., Liu S.-C., Zuo T.-T., Wu X.-W., Yin Y.-X., Li N.-W., Gu J.-J., Cao F.-F., and Guo Y.-G. Guiding Uniform Li Plating/Stripping through Lithium–Aluminum Alloying Medium for Long-Life Li Metal Batteries. Angew. Chem. Int. Ed., 2019, vol. 58, pp. 1094–1099. https://doi.org/10.1002/anie.201811955
  56. Ke X., Cheng Y., Liu J., Liu L., Wang N., Liu J., Zhi C., Shi Z., and Guo Z. Hierarchically Bicontinuous Porous Copper as Advanced 3D Skeleton for Stable Lithium Storage. ACS Appl. Mater. Interfaces, 2018, vol. 10, pp. 13552–13561. https://doi.org/10.1021/acsami.8b01978
  57. Lu L.-L., Ge J., Yang J.-N., Chen S.-M., Yao H., Zhou F., and Yu S.-H. Free-Standing Copper Nanowire Network Current Collector for Improving Lithium Anode Performance. Nano Lett., 2016, vol. 16, pp. 4431–4437. https://doi.org/10.1021/acs.nanolett.6b01581
  58. Zheng G., Lee S. W., Liang Z., Lee H.-W., Yan K., Yao H., Wang H., Li W., Chu S., and Cui Y. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol., 2014, vol. 9, pp. 618–623. https://doi.org/10.1038/nnano.2014.152
  59. Pathak R., Zhou Y., and Qiao Q. Recent Advances in Lithiophilic Porous Framework toward Dendrite-Free Lithium Metal Anode. Appl. Sci., 2020, vol. 10, article no. 4185. https://doi.org/10.3390/app10124185
  60. Zhou L., Zhang K., Hu Z., Tao Z., Mai L., Kang Y.-M., Chou S.-L., and Chen J. Recent Developments on and Prospects for Electrode Materials with Hierarchical Structures for Lithium-Ion Batteries. Adv. Energy Mater., 2018, vol. 8, article no. 1701415. https://doi.org/10.1002/aenm.201701415
  61. Deng W., Zhou X., Fang Q., and Liu Z. Microscale Lithium Metal Stored inside Cellular Graphene Scaffold toward Advanced Metallic Lithium Anodes. Adv. Energy Mater., 2018, vol. 8, article no. 1703152.
  62. Zhang R., Cheng X.-B., Zhao C.-Z., Peng H.-J., Shi J.-L., Huang J.-Q., Wang J., Wei F., and Zhang Q. Conductive Nanostructured Scaffolds Render Low Local Current Density to Inhibit Lithium Dendrite Growth. Adv. Mater., 2016, vol. 28, pp. 2155–2162. https://doi.org/10.1002/adma.201504117
  63. Lin K., Xu X., Qin X., Wang S., Han C., Geng H., Li X., Kang F., Chen G., and Li B. Dendrite-free lithium deposition enabled by a vertically aligned graphene pillar architecture. Carbon, 2021, vol. 185, pp. 152–160. https://doi.org/10.1016/j.carbon.2021.09.001
  64. Song Q., Yan H., Liu K., Xie K., Li W., Gai W., Chen G., Li H., Shen C., Fu Q., Zhang S., Zhang L., and Wei B. Vertically Grown Edge-Rich Graphene Nanosheets for Spatial Control of Li Nucleation. Adv. Energy Mater., 2018, vol. 8, article no. 1800564. https://doi.org/10.1002/aenm.201800564
  65. Jin S., Sun Z., Guo Y., Qi Z., Guo C., Kong X., Zhu Y., and Ji H. High Areal Capacity and Lithium Utilization in Anodes Made of Covalently Connected Graphite Microtubes. Adv. Mater., 2017, vol. 29, article no. 1700783. https://doi.org/10.1002/adma.201700783
  66. Zhang Y., Liu B., Hitz E., Luo W., Yao Y., Li Y., Dai J., Chen C., Wang Y., Yang C., Li H., and Hu L. A carbon-based 3D current collector with surface protection for Li metal anode. Nano Res., 2017, vol. 10, pp. 1356–1365. https://doi.org/10.1007/s12274-017-1461-2
  67. Ye H., Xin S., Yin Y.-X., Li J.-Y., Guo Y.-G., and Wan L.-J. Stable Li Plating/Stripping Electrochemistry Realized by a Hybrid Li Reservoir in Spherical Carbon Granules with 3D Conducting Skeletons. J. Am. Chem. Soc., 2017, vol. 139, pp. 5916–5922. https://doi.org/10.1021/jacs.7b01763
  68. Xie K., Wei W., Yuan K., Lu W., Guo M., Li Z., Song Q., Liu X., Wang J.-G., and Shen C. Toward Dendrite-Free Lithium Deposition via Structural and Interfacial Synergistic Effects of 3D Graphene@Ni Scaffold. ACS Appl. Mater. Interfaces, 2016, vol. 8, pp. 26091–26097. https://doi.org/10.1021/acsami.6b09031
  69. Zhao F., Zhou X., Deng W., and Liu Z. Entrapping lithium deposition in lithiophilic reservoir constructed by vertically aligned ZnO nanosheets for dendrite-free Li metal anodes. Nano Energy, 2019, vol. 62, pp. 55–63. https://doi.org/10.1016/j.nanoen.2019.04.087
  70. Xia Y., Jiang Y., Qi Y., Zhang W., Wang Y., Wang S., Liu Y., Sun W., and Zhao X.-Z. 3D stable hosts with controllable lithiophilic architectures for high-rate and high-capacity lithium metal anodes. J. Power Sources, 2019, vol. 442, article no. 227214. https://doi.org/10.1016/j.jpowsour.2019.227214
  71. Zhang Y., Wei C., Sun J., Jian J., Jin C., Lu C., Peng L., Li S., Rümmeli M. H., and Yang R. Au@rGO modified Ni foam as a stable host for lithium metal anode. Solid State Ionics, 2021, vol. 364, article no. 115636. https://doi.org/10.1016/j.ssi.2021.115636
  72. Umeda G. A., Menke E., Richard M., Stamm K. L., Wudl F., and Dunn B. Protection of lithium metal surfaces using tetraethoxysilane. J. Mater. Chem., 2011, vol. 21, pp. 1593–1599. https://doi.org/10.1039/c0jm02305a
  73. Liu L., Yin Y.-X., Li J.-Y., Wang S.-H., Guo Y.-G., and Wan L.-J. Uniform Lithium Nucleation/Growth Induced by Lightweight Nitrogen-Doped Graphitic Carbon Foams for High-Performance Lithium Metal Anodes. Adv. Mater., 2018, vol. 30, article no. 1706216. https://doi.org/10.1002/adma.201706216
  74. Yu Z., Zhou J., Lv X., Li C., Liu X., Yang S., and Liu Y. Nitrogen-doped porous carbon nanofiber decorated with FeNi alloy for dendrite-free high-performance lithium metal anode. J. Alloys Compd., 2022, vol. 925, article no. 166691. https://doi.org/10.1016/j.jallcom.2022.166691
  75. Xue P., Liu S., Shi X., Sun C., Lai C., Zhou Y., Sui D., Chen Y., and Liang J. A Hierarchical Silver-Nanowire–Graphene Host Enabling Ultrahigh Rates and Superior Long-Term Cycling of Lithium-Metal Composite Anodes. Adv. Mater., 2018, vol. 30, article no. 1804165. https://doi.org/10.1002/adma.201804165
  76. Xu T., Hou L., Yan C., Hou J., Tian B., Yuan H., Kong D., Wang H., Li X., Wang Y., and Zhang G. Uniform lithium deposition guided by Au nanoparticles in vertical-graphene/carbon-cloth skeleton for dendrite-free and stable lithium metal anode. Scr. Mater., 2023, vol. 229, article no. 115352. https://doi.org/10.1016/j.scriptamat.2023.115352
  77. Xu C., Wang H., Liu X., Liu G., Zhang Z., Wu C., and Li J. Lithiophilic vanadium oxide coated three-dimensional carbon network design towards stable lithium metal anode. J. Power Sources, 2023, vol. 562, article no. 232778. https://doi.org/10.1016/j.jpowsour.2023.232778
  78. Kozen A. C., Lin C.-F., Pearse A. J., Schroeder M. A., Han X., Hu L., Lee S.-B., Rubloff G. W., and Noked M. Next-Generation Lithium Metal Anode Engineering via Atomic Layer Deposition. ACS Nano, 2015, vol. 9, pp. 5884–5892. https://doi.org/10.1021/acsnano.5b02166
  79. Wu S., Zhang Z., Lan M., Yang S., Cheng J., Cai J., Shen J., Zhu Y., Zhang K., and Zhang W. Lithiophilic Cu-CuO-Ni Hybrid Structure: Advanced Current Collectors Toward Stable Lithium Metal Anodes. Adv. Mater., 2018, vol. 30, article no. 1705830. https://doi.org/10.1002/adma.201705830
  80. Chen X.-R., Li B.-Q., Zhao C.-X., Zhang R., and Zhang Q. Synergetic Coupling of Lithiophilic Sites and Conductive Scaffolds for Dendrite-Free Lithium Metal Anodes. Small Methods, 2019, vol. 4, article no. 1900177. https://doi.org/10.1002/smtd.201900177
  81. Li B.-Q., Zhang S.-Y., Wang B., Xia Z.-J., Tang C., and Zhang Q. A Porphyrin Covalent Organic Framework Cathode for Flexible Zn-Air Batteries. Energy Environ. Sci., 2018, vol. 11, pp. 1723–1729. https://doi.org/10.1039/C8EE00977E
  82. Luo L., Li J., Asl H. Y., and Manthiram A. A 3D Lithiophilic Mo2N-Modified Carbon Nanofiber Architecture for Dendrite-Free Lithium-Metal Anodes in a Full Cell. Adv. Mater., 2019, vol. 31, article no. 1904537. https://doi.org/10.1002/adma.201904537
  83. Gao Y., Zhao Y., Li Y. C., Huang Q., Mallouk T. E., and Wang D. Interfacial Chemistry Regulation via a Skin-Grafting Strategy Enables High-Performance Lithium-Metal Batteries. J. Am. Chem. Soc., 2017, vol. 139, pp. 15288–15291. https://doi.org/10.1021/jacs.7b06437
  84. Tung S.-O., Ho S., Yang M., Zhang R., and A. Kotov N. A. A dendrite-suppressing composite ion conductor from aramid nanofibers. Nat. Commun., 2015, vol. 6, article no. 6152. https://doi.org/10.1038/ncomms7152
  85. Liu K., Pei A., Lee H. R., Kong B., Liu N., Lin D., Liu Y., Liu C., Hsu P., Bao Z., and Cui Y. Lithium Metal Anodes with an Adaptive “Solid-Liquid” Interfacial Protective Layer. J. Am. Chem. Soc., 2017, vol. 139, pp. 4815–4820. https://doi.org/10.1021/jacs.6b13314
  86. Choudhury S., Mangal R., Agrawal A., and Archer L. A. A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles. Nat. Commun., 2015, vol. 6, article no. 10101. https://doi.org/10.1038/ncomms10101
  87. Kong X., Rudnicki P. E., Choudhury S., Bao Z., and Qin J. Dendrite Suppression by a Polymer Coating: A Coarse-Grained Molecular Study. Adv. Funct. Mater., 2020, vol. 30, article no. 1910138. https://doi.org/10.1002/adfm.201910138
  88. Wang D., Liu H., Liu F., Ma G., Yang J., Gu X., Zhou M., and Chen Z. Phase-Separation-Induced Porous Lithiophilic Polymer Coating for High-Efficiency Lithium Metal Batteries. Nano Lett., 2021, vol. 21, pp. 4757–4764. https://doi.org/10.1021/acs.nanolett.1c01241
  89. Jang E. K., Ahn J., Yoon S., and Cho K. Y. High Dielectric, Robust Composite Protective Layer for Dendrite-Free and LiPF6 Degradation-Free Lithium Metal Anode. Adv. Funct. Mater., 2019, vol. 29, article no. 1905078. https://doi.org/10.1002/adfm.201905078
  90. Li N., Ye Q., Zhang K., Yan H., Shen C., Wei B., and Xie K. Normalized Lithium Growth from the Nucleation Stage for Dendrite-Free Lithium Metal Anodes. Angew. Chem. Int. Ed., 2019, vol. 58, pp. 18246–18251. https://doi.org/10.1002/anie.201911267
  91. Liu W., Lin D., Pei A., and Cui Y. Stabilizing Lithium Metal Anodes by Uniform Li-Ion Flux Distribution in Nanochannel Confinement. J. Am. Chem. Soc., 2016, vol. 138, pp. 15443–15450. https://doi.org/10.1021/jacs.6b08730
  92. Long K., Huang S., Wang H., Jin Z., Wang A., Wang Z., Qing P., Liu Z., Chen L., Mei L., and Wang W. High interfacial capacitance enabled stable lithium metal anode for practical lithium metal pouch cells. Energy Storage Mater., 2023, vol. 58, pp. 142–154. https://doi.org/10.1016/j.ensm.2023.02.039
  93. Zhang C., Lv W., Zhou G., Huang Z., Zhang Y., Lyu R., Wu H., Yun Q., Kang F., and Yang Q.-H. Vertically Aligned Lithiophilic CuO Nanosheets on a Cu Collector to Stabilize Lithium Deposition for Lithium Metal Batteries. Adv. Energy Mater., 2018, vol. 8, article no. 1703404. https://doi.org/10.1002/aenm.201703404
  94. Pang Q., Liang X., Kochetkov I. R., Hartmann P., and Nazar L. F. Stabilizing Lithium Plating by a Biphasic Surface Layer Formed In Situ. Angew. Chem. Int. Ed., 2018, vol. 130, pp. 9943–9946. https://doi.org/10.1002/anie.201805456
  95. Liang X., Pang Q., Kochetkov I. R., Sempere M. S., Huang H., Sun X., and Nazar L. F. A facile surface chemistry route to a stabilized lithium metal anode. Nat. Energy, 2017, vol. 2, pp. 17119–17124. https://doi.org/10.1038/nenergy.2017.119
  96. Tu Z., Choudhury S., Zachman M. J., Wei S., Zhang K., Kourkoutis L. F., and Archer L. A. Fast ion transport at solid–solid interfaces in hybrid battery anodes. Nat. Energy, 2018, vol. 3, pp. 310–316. https://doi.org/10.1038/s41560-018-0096-1
  97. Wu M., Wen Z., Liu Y., Wang X., and Huang L. Electrochemical behaviors of a Li3N modified Li metal electrode in secondary lithium batteries. J. Power Sources, 2011, vol. 196, pp. 8091–8097. https://doi.org/10.1016/j.jpowsour.2011.05.035
  98. Zhang Y. J., Wang W., Tang H., Bai W. Q., Ge X., Wang X. L., Gu C. D., Tu J. P. An ex-situ nitridation route to synthesize Li3N-modified Li anodes for lithium secondary batteries. J. Power Sources, 2015, vol. 277, pp. 304–311. https://dx.doi.org/10.1016/j.jpowsour.2014.12.023
  99. Luo W., Zhou L., Fu K., Yang Z., Wan J., Manno M., Yao Y., Zhu H., Yang B., and Hu L. A Thermally Conductive Separator for Stable Li Metal Anodes. Nano Lett., 2015, vol. 15, pp. 6149–6154. https://doi.org/10.1021/acs.nanolett.5b02432
  100. Kazyak E., Wood K. N., and Dasgupta N. P. Improved Cycle Life and Stability of Lithium Metal Anodes through Ultrathin Atomic Layer Deposition Surface Treatments. Chem. Mater., 2015, vol. 27, pp. 6457–6462. https://doi.org/10.1021/acs.chemmater.5b02789
  101. Wang H., Li Y., Li Y., Liu Y., Lin D., Zhu C., Chen G., Yang A., Yan K., Chen H., Zhu Y., Li J., Xie J., Xu J., Zhang Z., Vilá R., Pei A., Wang K., and Cui Y. Wrinkled Graphene Cages as Hosts for High-Capacity Li Metal Anodes Shown by Cryogenic Electron Microscopy. Nano Lett., 2019, vol. 19, pp. 1326–1335. https://doi.org/10.1021/acs.nanolett.8b04906
  102. Lin D., Liu Y., Liang Z., Lee H.-W., Sun J., Wang H., Yan K., Xie J., and Cui Y. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat. Nanotech., 2016, vol. 11, pp. 626–632. https://doi.org/10.1038/nnano.2016.32
  103. Liu Z., Ha S., Liu Y., Wang F., Tao F., Xu B., Yu R., Wang G., Ren F., and Li H. Application of Ag-based materials in high-performance lithium metal anode: A review. J. Mater. Sci. Technol., 2023, vol. 133, pp. 165–182. https://doi.org/10.1016/j.jmst.2022.06.015
  104. Yang C., Yao Y., He S., Xie H., Hitz E., and Hu L. Ultrafine Silver Nanoparticles for Seeded Lithium Deposition toward Stable Lithium Metal Anode. Adv. Mater., 2017, vol. 29, article no. 1702714. https://doi.org/10.1002/adma.201702714
  105. Hou Z., Yu Y., Wang W., Zhao X., Di Q., Chen Q., Chen W., Liu Y., and Quan Z. Lithiophilic Ag Nanoparticle Layer on Cu Current Collector toward Stable Li Metal Anode. ACS Appl. Mater. Interfaces, 2019, vol. 11, pp. 8148–8154. https://doi.org/10.1021/acsami.9b01521
  106. Wang X., Pan Z., Wu Y., Xu G., Zheng X., Qiu Y., Liu M., Zhang Y., Li W. Reducing Lithium Deposition Overpotential with Silver Nanocrystals Anchored on Graphene Aerogel. Nanoscale, 2018, vol. 10, pp. 16562–16567. https://doi.org/10.1039/C8NR04655G
  107. Wang H., Hu P., Liu X., Shen Y., Yuan L., Li Z., and Huang Y. Sowing Silver Seeds within Patterned Ditches for Dendrite-Free Lithium Metal Batteries. Adv. Sci., 2021, vol. 8, article no. 2100684. 2100684https://doi.org/10.1002/advs.202100684
  108. Zhang S. S., Fan X., and Wang C. A tin-plated copper substrate for efficient cycling of lithium metal in an anode-free rechargeable battery. Electrochim. Acta, 2017, vol. 258, pp. 1201–1207. https://doi.org/10.1016/j.electacta.2017.11.175
  109. Cheng X.-B., Hou T.-Z., Zhang R., Peng H.-J., Zhao C.-Z., Huang J.-Q., and Zhang Q. Dendrite-Free Lithium Deposition Induced by Uniformly Distributed Lithium Ions for Efficient Lithium Metal Batteries. Adv. Mater., 2016, vol. 28, pp. 2888–2895. https://doi.org/10.1002/adma.201506124
  110. Liang Z., Zheng G., Liu C., Liu N., Li W., Yan K. Yao H., Hsu P., Chu S., and Cui Y. Polymer Nanofiber-Guided Uniform Lithium Deposition for Battery Electrodes. Nano Lett., 2015, vol. 15, pp. 2910–2916. https://doi.org/10.1021/nl5046318
  111. Liu Y., Lin D., Liang Z., Zhao J., Yan K., and Cui Y. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. Nat. Commun., 2016, vol. 7, article no. 10992. https://doi.org/10.1038/ncomms10992
  112. Zu C., Li J., Cai B., Qiu J., Zhao Y., Yang Q., Li H., and Yu H. Separators with reactive metal oxide coatings for dendrite-free lithium metal anodes. J. Power Sources, 2023, vol. 555, article no. 232336. https://doi.org/10.1016/j.jpowsour.2022.232336
  113. Liu B., Zhang Y., Pan G., Ai C., Deng S., Liu S., Liu Q., Wang X., Xia X., and Tu J. Ordered lithiophilic sites to regulate Li plating/stripping behavior for superior lithium metal anodes. J. Mater. Chem. A, 2019, vol. 7, pp. 21794–21801. https://doi.org/10.1039/C9TA09502K
  114. Ju Z., Nai J., Wang Y., Liu T., Zheng J., Yuan H., Sheng O., Jin C., Zhang W., Jin Z., Tian H., Liu Y., and Tao X. Biomacromolecules enabled dendrite-free lithium metal battery and its origin revealed by cryoelectron microscopy. Nat. Commun., 2020, vol. 11, pp. 488–496. https://doi.org/10.1038/s41467-020-14358-1
  115. Ren X., Zou L., Cao X., Engelhard M. H., Liu W., Burton S. D., Lee H., Niu C., Matthews B. E., Zhu Z., Wang C., Arey B. W., Xiao J., Liu J., Zhang J.-G., and Xu W. Enabling High-Voltage Lithium-Metal Batteries under Practical Conditions. Joule, 2019, vol. 3, pp. 1662–1676. https://doi.org/10.1016/j.joule.2019.05.006
  116. Qian J., Henderson W. A., Xu W., Bhattacharya P., Engelhard M., Borodin O., and Zhang J.-G. High rate and stable cycling of lithium metal anode. Nat. Commun., 2015, vol. 6, article no. 6362. https://doi.org/10.1038/ncomms7362
  117. Wang J., Huang W., Pei A., Li Y., Shi F., Yu X., and Cui Y. Improving cyclability of Li metal batteries at elevated temperatures and its origin revealed by cryo-electron microscopy. Nat. Energy, 2019, vol. 4, pp. 664–670. https://doi.org/10.1038/s41560-019-0413-3
  118. Miao R., Yang J., Feng X., Jia H., Wang J., and Nuli Y. Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility. J. Power Sources, 2014, vol. 271, pp. 291–297. https://dx.doi.org/10.1016/j.jpowsour.2014.08.011
  119. Weber R., Genovese M., Louli A. J., Hames S., Martin C., Hill I. G., and Dahn J. R. Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte. Nat. Energy, 2019, vol. 4, pp. 683–689. https://doi.org/10.1038/s41560-019-0428-9
  120. Xue W., Huang M., Li Y., Zhu Y. G., Gao R., Xiao X., Zhang W., Li S., Xu G., Yu Y., Li P., Lopez J., Yu D., Dong Y., Fan W., Shi Z., Xiong R., Sun C.-J., and Hwa I. Ultra-high-voltage Ni-rich layered cathodes in practical Li metal batteries enabled by a sulfonamide-based electrolyte. Nat. Energy, 2021, vol. 6, pp. 495–505. https://doi.org/10.1038/s41560-021-00792-y
  121. Yu H., Zhao J., Ben L., Zhan Y., Wu Y., and Huang X. Dendrite-Free Lithium Deposition with Self-Aligned Columnar Structure in a Carbonate-Ether Mixed Electrolyte. ACS Energy Lett., 2017, vol. 2, pp. 1296–1302. https://doi.org/10.1021/acsenergylett.7b00273
  122. Ren X., Zhang Y., Engelhard M. H., Li Q., Zhang J., and Xu W. Guided Lithium Metal Deposition and Improved Lithium Coulombic Efficiency through Synergistic Effects of LiAsF6 and Cyclic Carbonate Additives. ACS Energy Lett., 2018, vol. 3, pp. 14–19. https://doi.org/10.1021/acsenergylett.7b00982
  123. Lu Y., Tu Z., Shu J., and Archer L. A. Stable lithium electrodeposition in salt-reinforced electrolytes. J. Power Sources, 2015, vol. 279, pp. 413–418. https://dx.doi.org/10.1016/j.jpowsour.2015.01.030
  124. Qian J., Xu W., Bhattacharya P., Engelhard M., Henderson W. A., Zhang Y., and Zhang J.-G. Dendrite-free Li deposition using trace-amounts of water as an electrolyte additive. Nano Energy, 2015, vol. 15, pp. 135–144. https://dx.doi.org/10.1016/j.nanoen.2015.04.009
  125. Togasaki N., Momma T., and Osaka T. Enhancement effect of trace H2O on the charge-discharge cycling performance of a Li metal anode. J. Power Sources, 2014, vol. 261, pp. 23–27. https://dx.doi.org/10.1016/j.jpowsour.2014.03.040
  126. Yang Y., Davies D. M., Yin Y., Borodin O., Lee J. Z., Fang C., Olguin M., Zhang Y., Sablina E. S., Wang X., Rustomji C. S., and Meng Y. S. High-Efficiency Lithium-Metal Anode Enabled by Liquefied Gas Electrolytes. Joule, 2019, vol. 3, pp. 1986–2000. https://doi.org/10.1016/j.joule.2019.06.008
  127. Rustomji C. S., Yang Y., Kim T. K., Mac J., Kim Y. J., Caldwell E., Chung H., and Meng Y. S. Liquefied gas electrolytes for electrochemical energy storage devices. Science, 2017, vol. 356. iss. 6345, article no. eaal4263. https://doi.org/10.1126/science.aal4263
  128. Kim J.-S., Kim D. W., Jung H. T., and Choi J. W. Controlled Lithium Dendrite Growth by a Synergistic Effect of Multilayered Graphene Coating and an Electrolyte Additive. Chem. Mater., 2015, vol. 27, pp. 2780–2787. https://doi.org/10.1021/cm503447u
  129. Ding F., Xu W., Graff G. L., Zhang J., Sushko M. L., Chen X., Shao Y., Engelhard M. H., Nie Z., Xiao J., Liu X., Sushko P. V., Liu J., and Zhang J.-G. Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism. J. Am. Chem. Soc., 2013, vol. 135, pp. 4450–4456. https://doi.org/10.1021/ja312241y
  130. Zhang Y., Qian J., Xu W., Russell S. M., Chen X., Nasybulin E., Bhattacharya P., Engelhard M. H., Mei D., Cao R., Ding F., Cresce A. V., Xu K., and Zhang J.-G. Dendrite-Free Lithium Deposition with Self-Aligned Nanorod Structure. Nano Lett., 2014, vol. 14, pp. 6889–6896. https://doi.org/10.1021/nl5039117
  131. Stark J. K., Ding Y., and Kohl P. A. Nucleation of Electrodeposited Lithium Metal: Dendritic Growth and the Effect of Co-Deposited Sodium. J. Electrochem. Soc., 2013, vol. 160, pp. D337–D342. https://doi.org/10.1149/2.028309jes
  132. Shen Y., Zhang Y., Han S., Wang J., Peng Z., and Chen L. Unlocking the Energy Capabilities of Lithium Metal Electrode with Solid-State Electrolytes. Joule, 2018, vol. 2, pp. 1674–1689. https://doi.org/10.1016/j.joule.2018.06.021
  133. Bouchet R. Maria S., Meziane R., Aboulaich A., Lienafa L., Bonnet J.-P., Phan T. N. T., Bertin D., Gigmes D., Devaux D., Denoyel R., and Armand M. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat. Mater., 2013, vol. 12, pp. 452–457. https://doi.org/10.1038/nmat3602
  134. Yang Q., Wang A., Luo J., and Tang W. Improving ionic conductivity of polymer-based solid electrolytes for lithium metal batteries. Chin. J. Chem. Eng., 2022, vol. 43, pp. 202–215. https://doi.org/10.1016/j.cjche.2021.07.008
  135. Meng N., Zhu X., and Lian F. Particles in composite polymer electrolyte for solid-state lithium batteries: A review. Particuology, 2022, vol. 60, pp. 14–36. https://doi.org/10.1016/j.partic.2021.04.002
  136. Zhao Y., Wu C., Peng G., Chen X., Yao X., Bai Y., Wu F., Chen S., and Xu X. A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries. J. Power Sources, 2016, vol. 301, pp. 47–53. https://dx.doi.org/10.1016/j.jpowsour.2015.09.111
  137. Wang Z., Miao C., Xiao W., Zhang Y., Mei P., Yan X., Jiang Y., and Tian M. Effect of different contents of organic-inorganic hybrid particles poly(methyl methacrylate) – ZrO2 on the properties of poly(vinylidene fluoride-hexafluoroprolene)-based composite gel polymer electrolytes. Electrochim. Acta, 2018, vol. 272, pp. 127–134. https://doi.org/10.1016/j.electacta.2018.04.040
  138. Zeng X.-X., Yin Y.-X., Li N.-W., Du W.-C., Guo Y.-G., and Wan L.-J. Reshaping Lithium Plating/Stripping Behavior via Bifunctional Polymer Electrolyte for Room-Temperature Solid Li Metal Batteries. J. Am. Chem. Soc., 2016, vol. 138, pp. 15825–15828. https://doi.org/10.1021/jacs.6b10088
  139. Khurana R., Schaefer J. L., Archer L. A., and Coates G. W. Suppression of Lithium Dendrite Growth Using Cross-Linked Polyethylene/Poly(ethylene oxide) Electrolytes: A New Approach for Practical Lithium-Metal Polymer Batteries. J. Am. Chem. Soc., 2014, vol. 136, pp. 7395–7402. https://doi.org/10.1021/ja502133j
  140. Liu Y., Cai Z., Tan L., and Li L. Ion exchange membranes as electrolyte for high performance Li-ion batteries. Energy Environ. Sci., 2012, vol. 5, pp. 9007–9013. https://doi.org/10.1039/C2EE22753C
  141. Liu Y., Tan L., and Li L. Ion exchange membranes as electrolyte to improve high temperature capacity retention of LiMn2O4 cathode lithium-ion batteries. Chem. Commun., 2012, vol. 48, pp. 9858–9860. https://doi.org/10.1039/C2CC34529C
  142. Cai Z., Liu Y., Liu S., Li L., and Zhang Y. High performance of lithium-ion polymer battery based on non-aqueous lithiated perfluorinated sulfonic ion-exchange membranes. Energy Environ. Sci., 2012, vol. 5, pp. 5690–5693. https://doi.org/10.1039/c1ee02708e
  143. Lu Y., Tikekar M., Mohanty R., Hendrickson K., Ma L., and Archer L. A. Stable Cycling of Lithium Metal Batteries Using High Transference Number Electrolytes. Adv. Energy Mater., 2015, vol. 5, article no. 1402073. https://doi.org/10.1002/aenm.201402073
  144. Pan Q., Smith D. M., Qi H., Wang S., and Li C. Y. Hybrid Electrolytes with Controlled Network Structures for Lithium Metal Batteries. Adv. Mater., 2015, vol. 27, pp. 5995–6001. https://doi.org/10.1002/adma.201502059
  145. Su L., Darling R. M., Gallagher K. G., Xie W., Thelen J. L., Badel A. F., Barton J. L., Cheng K. J., Balsara N. P., Moore J. S., and Brushett F. R. An Investigation of the Ionic Conductivity and Species Crossover of Lithiated Nafion 117 in Nonaqueous Electrolytes. J. Electrochem. Soc., 2016, vol. 163, pp. A5253–A5262. https://doi.org/10.1149/2.03211601jes
  146. Sanginov E. A., Evshchik E. Yu., Kayumov R. R., and Dobrovol’skii Yu. A. Lithium-Ion Conductivity of the Nafion Membrane Swollen in Organic Solvents. Russ. J. Electrochem., 2015, vol. 51, pp. 986–990. https://doi.org/10.1134/s1023193515100122
  147. Sanginov E. A., Kayumov R. R., Shmygleva L. V., Lesnichaya V. A., Karelin A. I., and Dobrovolsky Y. A. Study of the transport of alkali metal ions in a nonaqueous polymer electrolyte based on Nafion. Solid State Ionics, 2017, vol. 300, pp. 26–31. https://doi.org/10.1016/j.ssi.2016.11.017
  148. Voropaeva D. Yu., Novikova S. A., Kulova T. L., and Yaroslavtsev A. B. Conductivity of Nafion-117 membranes intercalated by polar aprotonic solvents. Ionics, 2018, vol. 24, pp. 1685–1692. https://doi.org/10.1007/s11581-017-2333-1
  149. Voropaeva D. Yu., and Yaroslavtsev A. B. Polymer Electrolyte for Lithium Metal Batteries Based on Nafion and N,N-Dimethylacetamide. Membr. Membr. Technol., 2022, vol. 4, pp. 276–279. https://doi.org/10.1134/S2517751622040102
  150. Kayumov R. R., Shmygleva L. V., Evshchik E. Yu., Sanginov E. A., Popov N. A., Bushkova O. V., and Dobrovolsky Yu. A. Conductivity of Lithium-Conducting Nafion Membranes Plasticized by Binary and Ternary Mixtures in the Sulfolan–Ethylene Carbonate–Diglyme System. Russ. J. Electrochem., 2021, vol. 57, pp. 911–920. https://doi.org/10.1134/S1023193521060045
  151. Istomina A. S., Yaroslavtseva T. V., Reznitskikh O. G., Kayumov R. R., Shmygleva L. V., Sanginov E. A., Dobrovolsky Y. A., and Bushkova O. V. Li-Nafion Membrane Plasticised with Ethylene Carbonate/Sulfolane: Influence of Mixing Temperature on the Physicochemical Properties. Polymers, 2021, vol. 13, article no. 1150. https://doi.org/10.3390/polym13071150
  152. Sanginov E. A., Borisevich S. S., Kayumov R. R., Istomina A. S., Evshchik E. Yu., Reznitskikh O. G., Yaroslavtseva T. V., Melnikova T. I., Dobrovolsky Yu. A., and Bushkova O. V. Lithiated Nafion plasticised by a mixture of ethylene carbonate and sulfolane. Electrochim. Acta, 2021, vol. 373, article no. 137914. https://doi.org/10.1016/j.electacta.2021.137914
  153. Karelin A. I., Kayumov R. R., Sanginov E. A., and Dobrovolsky Yu. A. Structure of Lithium Ion-Conducting Polymer Membranes Based on Nafion Plasticized with Dimethylsulfoxide. Pet. Chem., 2016, vol. 56, pp. 1020–1026. https://doi.org/10.1134/S0965544116110074
  154. Alexander Skundin, Tatiana Kulova, Alexander Rudy, and Alexander Mironenko. All Solid State Thin-Film Lithium-Ion Batteries: Materials, Technology, and Diagnostics. CRC Press, Taylor & Francis Group, 2021. 214 p. ISBN: 9780367086824
  155. Bates J. B., Dudney N. J., Gruzalski G. R., Zuhr R. A., Choudhury A., Luck C. F., and Robertson J. D. Electrical properties of amorphous lithium electrolyte thin films. Solid State Ionics, 1992, vol. 53–56, pp. 647–654. https://doi.org/10.1016/0167-2738(92)90442-R
  156. Bates J. B., Dudney N. J., Gruzalski G. R., Zuhr R. A., Choudhury A., Luck C. F., and Robertson J. D. Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries J. Power Sources, 1993, vol. 43–44, pp. 103–110. https://doi.org/10.1016/0378-7753(93)80106-Y
  157. Bates J. B., Dudney N. J., Lubben D. C., Gruzalski G. R., Kwak B. S., Yu X., and Zuhr R. A. Thin-film rechargeable lithium batteries. J. Power Sources, 1995, vol. 54, pp. 58–62. https://doi.org/10.1016/0378-7753(94)02040-A
  158. Lv Q., Jiang Y., Wang B., Chen Y., Jin F., Wu B., Ren H., Zhang N., Xu R., Li Y., Zhang T., Zhou Y., Wang D., Liu H., and Dou S. Suppressing lithium dendrites within inorganic solid-state electrolytes. Cell Rep. Phys. Sci., 2022, vol. 3, article no. 100706. https://doi.org/10.1016/j.xcrp.2021.100706
  159. Chen L., Ding K., Li K., Li Z., Zhang X., Zheng Q., Cai Y.-P., and Lan Y.-Q. Crystalline Porous Materials-based Solid-State Electrolytes for Lithium Metal Batteries. EnergyChem., 2022, vol. 4, article no. 100073. https://doi.org/10.1016/j.enchem.2022.100073
  160. Paul P. P., Chen B.-R., Langevin S. A., Dufek E. J., Weker J. N., and Ko J. S. Interfaces in all solid state Li-metal batteries: A review on instabilities, stabilization strategies, and scalability. Energy Storage Mater., 2022, vol. 45, pp. 969–1001. https://doi.org/10.1016/j.ensm.2021.12.021
  161. Das A., Sahu S., Mohapatra M., Verma S., Bhattacharyya A. J., and Basu S. Lithium-ion conductive glass-ceramic electrolytes enable safe and practical Li batteries. Mater. Today Energy, 2022, vol. 29, article no. 101118. https://doi.org/10.1016/j.mtener.2022.101118
  162. Krauskopf T., Richter F. H., Zeier W. G., and Janek J. Physicochemical Concepts of the Lithium Metal Anode in Solid-State Batteries. Chem. Rev., 2020, vol. 120, pp. 7745–7794. https://doi.org/10.1021/acs.chemrev.0c00431
  163. Hatzell K. B., Chen X. C., Cobb C. L., Dasgupta N. P., Dixit M. B., Marbella L. E., McDowell M. T., Mukherjee P. P., Verma A., Viswanathan V., Westover A. S., and Zeier W. G. Challenges in Lithium Metal Anodes for Solid-State Batteries. ACS Energy Lett., 2020, vol. 5, pp. 922–934. https://dx.doi.org/10.1021/acsenergylett.9b02668
  164. Knauth P. Inorganic solid Li ion conductors: An overview. Solid State Ionics., 2009, vol. 180, pp. 911–916. https://doi.org/10.1016/j.ssi.2009.03.022
  165. Quartarone E., and Mustarelli P. Electrolytes for solid-state lithium rechargeable batteries: Recent advances and perspectives. Chem. Soc. Rev., 2011, vol. 40, pp. 2525–2540. https://doi.org/10.1039/C0CS00081G
  166. Bachman J. C., Muy S., Grimaud A., Chang H.-H., Pour N., Lux S. F., Paschos O., Maglia F., Lupart S., Lamp P., Giordano L., and Shao-Horn Y. Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. Chem. Rev., 2016, vol. 116, pp. 140–162. https://doi.org/10.1021/acs.chemrev.5b00563
  167. Kamaya N., Homma K., Yamakawa Y., Hirayama M., Kanno R., Yonemura M., Kamiyama T., Kato Y., Hama S., and Kawamoto K. A lithium superionic conductor. Nat. Mater., 2011, vol. 10, pp. 682–686. https://doi.org/10.1038/nmat3066
  168. Minami T., Hayashi A., and Tatsumisago M. Recent progress of glass and glass-ceramics as solid electrolytes for lithium secondary batteries. Solid State Ionics, 2006, vol. 177, pp. 2715–2720. https://doi.org/10.1016/j.ssi.2006.07.017
  169. Thangadurai V., and Weppner W. Recent progress in solid oxide and lithium ion conducting electrolytes research. Ionics, 2006, vol. 12, pp. 81–92 https://doi.org/10.1007/s11581-006-0013-7
  170. Tatsumisago M., Nagao M., and Hayashi A. Recent development of sulfide solid electrolytes and interfacial modification for all-solid-state rechargeable lithium batteries. J. Asian Ceram. Soc., 2013, vol. 1, pp. 17–25. https://doi.org/10.1016/j.jascer.2013.03.005
  171. Liu D., Zhu W., Feng Z., Guerfi A., Vijh A., and Zaghib K. Recent progress in sulfide-based solid electrolytes for Li-ion batteries. Mat. Sci. Eng. B, 2016, vol. 213, pp. 169–176. https://doi.org/10.1016/j.mseb.2016.03.005
  172. Wei J., Yang Z., Lu G., Hu X., Li Z., Wang R., and Xu C. Enabling an electron/ion conductive composite lithium anode for solid-state lithium-metal batteries with garnet electrolyte. Energy Storage Mater., 2022, vol. 53, pp. 204–211. https://doi.org/10.1016/j.ensm.2022.08.041
  173. Han X., Gong Y., Fu K., He X., Hitz G. T., Dai J., Pearse A., Liu B., Wang H., Rubloff G., Mo Y., Thangadurai V., Wachsman E. D., and Hu L. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater., 2017, vol. 16, pp. 572–579. https://doi.org/10.1038/nmat4821
  174. Zeier W. G. Structural limitations for optimizing garnet-type solid electrolytes: A perspective. Dalton Trans., 2014, vol. 43, pp. 16133–16138. https://doi.org/10.1039/C4DT02162B
  175. Thangadurai V., Narayanan S., and Pinzaru D. Garnet-type solid-state fast Li ion conductors for Li batteries: Critical review. Chem. Soc. Rev., 2014, vol. 43, pp. 4714–4727. https://doi.org/10.1039/C4CS00020J
  176. Teng S., Tan J., and Tiwari A. Recent developments in garnet based solid state electrolytes for thin film batteries. Current Opinion in Solid State and Materials Science, 2014, vol. 18, pp. 29–38. https://doi.org/10.1016/j.cossms.2013.10.002
  177. Ujiie S., Hayashi A., and Tatsumisago M. Preparation and ionic conductivity of (100-x)(0.8Li2S⋅0.2P2S5)⋅xLiI glass–ceramic electrolytes. J. Solid State Electrochem., 2013, vol. 17, pp. 675–680. https://doi.org/10.1007/s10008-012-1900-7
  178. Rangasamy E., Liu Z.,Gobet M., Pilar K., Sahu G., Zhou W., Wu H., Greenbaum S., and Liang C. An Iodide-Based Li7P2S8I Superionic Conductor. J. Am. Chem. Soc., 2015, vol. 137, pp. 1384–1387. https://doi.org/10.1021/ja508723m
  179. He Y., Chen W., Zhao Y., Li Y., Lv C., Li H., Yang J., Gao Z., and Luo J. Recent developments and progress of halogen elements in enhancing the performance of all-solid-state lithium metal batteries. Energy Storage Mater., 2022, vol. 49, pp. 19–57. https://doi.org/10.1016/j.ensm.2022.03.043
  180. Lu Y., Tu Z., and Archer L. A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater., 2014, vol. 13, pp. 961–969. https://doi.org/10.1038/nmat4041
  181. Keller M., Varzi A., and Passerini S. Hybrid electrolytes for lithium metal batteries. J. Power Sources, 2018, vol. 392, pp. 206–225. https://doi.org/10.1016/j.jpowsour.2018.04.099
  182. Zhou W., Wang S., Li Y., Xin S., Manthiram A., and Goodenough J. B. Plating a Dendrite-Free Lithium Anode with a Polymer/Ceramic/Polymer Sandwich Electrolyte. J. Am. Chem. Soc., 2016, vol. 138, pp. 9385–9388. https://doi.org/10.1021/jacs.6b05341
  183. Zhang J., Bai Y., Sun X.-G., Li Y., Guo B., Chen J., Veith G. M., Hensley D. K., Paranthaman M. P., Goodenough J. B., and Dai S. Superior Conductive Solid-like Electrolytes: Nanoconfining Liquids within the Hollow Structures. Nano Lett., 2015, vol. 15, pp. 3398–3402. https://doi.org/10.1021/acs.nanolett.5b00739
  184. Zhou D., Liu R., He Y.-B., Li F., Liu M., Li B., Yang Q.-H., Cai Q., and Kang F. SiO2 Hollow Nanosphere-Based Composite Solid Electrolyte for Lithium Metal Batteries to Suppress Lithium Dendrite Growth and Enhance Cycle Life. Adv. Energy Mater., 2016, vol. 6, article no. 1502214. https://doi.org/10.1002/aenm.201502214
  185. Li T., Zhang X.-Q., Shi P., and Zhang Q. Fluorinated Solid-Electrolyte Interphase in High-Voltage Lithium Metal Batteries. Joule, 2019, vol. 3, pp. 2647–2661. https://doi.org/10.1016/j.joule.2019.09.022
  186. Yan C., Li H.-R., Chen X., Zhang X.-Q., Cheng X.-B., Xu R., Huang J.-Q., and Zhang Q. Regulating the Inner Helmholtz Plane for Stable Solid Electrolyte Interphase on Lithium Metal Anodes. J. Am. Chem. Soc., 2019, vol. 141, pp. 9422–9429. https://doi.org/10.1021/jacs.9b05029
  187. Wu B., Lochala J., Taverne T., and Xiao J. The Interplay between Solid Electrolyte Interface (SEI) and Dendritic Lithium Growth. Nano Energy, 2017, vol. 40, pp. 34–41. https://dx.doi.org/10.1016/j.nanoen.2017.08.005
  188. Cao X., Ren X., Zou L., Engelhard M. H., Huang W., Wang H., Matthews B. E., Lee H., Niu C., Arey B. W., Cui Y., Wang C., Xiao J., Liu J., Xu W., and Zhang J. G. Monolithic solid–electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization. Nat. Energy, 2019, vol. 4, pp. 796–805. https://doi.org/10.1038/s41560-019-0464-5
  189. Cheng X.-B., and Zhang Q. Dendrite-free lithium metal anodes: Stable solid electrolyte interphases for high-efficiency batteries. J. Mater. Chem. A, 2015, vol. 3, pp. 7207–7209. https://doi.org/10.1039/C5TA00689A
  190. Bieker G., Winter M., and Bieker P. Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode. Phys. Chem. Chem. Phys., 2015, vol. 17, pp. 8670–8679. https://doi.org/10.1039/c4cp05865h
  191. Cheng X.-B., Zhang R., Zhao C.-Z., Wei F., Zhang J.-G., and Zhang Q. A Review of Solid Electrolyte Interphases on Lithium Metal Anode. Adv. Sci., 2016, vol. 3, article no. 1500213. https://doi.org/10.1002/advs.201500213
  192. Cheng X.-B., Zhao C.-Z., Yao Y.-X., Liu H., and Zhang Q. Recent Advances in Energy Chemistry between Solid-State Electrolyte and Safe Lithium-Metal Anodes. Chem., 2019, vol. 5, pp. 74–96. https://doi.org/10.1016/j.chempr.2018.12.002
  193. Fan X., Chen L., Borodin O., Ji X., Chen J., Hou S., Deng T., Zheng J., Yang C., Liou S., Amine K., Xu K., and Wang C. Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nat. Nanotechnol., 2018, vol. 13, pp. 715–722. https://doi.org/10.1038/s41565-018-0183-2
  194. Suo L., Xue W., Gobet M., Greenbaum S. G., Wang C., Chen Y., Yang W., Lie Y., and Li J. Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries. Proc. Natl. Acad. Sci. USA, 2018, vol. 115, pp. 1156–1161. https://doi.org/10.1073/pnas.1712895115
  195. Lang J., Long Y., Qu J., Luo X., Wei H., Huang K., Zhang H., Qi L., Zhang Q., Li Z., and Wu H. One-pot Solution Coating of High Quality LiF Layer to Stabilize Li Metal Anode. Energy Storage Mater., 2019, vol. 16, pp. 85–90. https://doi.org/10.1016/j.ensm.2018.04.024
  196. Zhang Z., Hu L., Wu H., Weng W., Koh M., Redfern P. C., Curtiss L. A., and Amine K. Fluorinated electrolytes for 5 V lithium-ion battery chemistry. Energy Environ. Sci., 2013, vol. 6, pp. 1806–1810. https://doi.org/10.1039/c3ee24414h
  197. Fan X., Ji X., Chen L., Chen J., Deng T., Han F., Yue J., Piao N., Wang R., Zhou X., Xiao X., Chen L., and Wang C. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents. Nat. Energy, 2019, vol. 4, pp. 882–890. https://doi.org/10.1038/s41560-019-0474-3
  198. Markevich E., Salitra G., Chesneau F., Schmidt M., and Aurbach D. Very Stable Lithium Metal Stripping-Plating at a High Rate and High Areal Capacity in Fluoroethylene Carbonate-Based Organic Electrolyte Solution. ACS Energy Lett., 2017, vol. 2, pp. 1321–1326. https://doi.org/10.1021/acsenergylett.7b00300
  199. Markevich E., Salitra G., and Aurbach D. Fluoroethylene Carbonate as an Important Component for the Formation of an Effective Solid Electrolyte Interphase on Anodes and Cathodes for Advanced Li-Ion Batteries. ACS Energy Lett., 2017, vol. 2, pp. 1337–1345. https://doi.org/10.1021/acsenergylett.7b00163
  200. Zhang X.-Q., Cheng X.-B., Chen X., Yan C., and Zhang Q. Fluoroethylene Carbonate Additives to Render Uniform Li Deposits in Lithium Metal Batteries. Adv. Funct. Mater., 2017, vol. 27, article no. 1605989. https://doi.org/10.1002/adfm.201605989
  201. Li Y., Huang W., Li Y., Pei A., Boyle D. T., and Cui Y. Correlating Structure and Function of Battery Interphases at Atomic Resolution Using Cryoelectron Microscopy. Joule, 2018, vol. 2, pp. 2167–2177. https://doi.org/10.1016/j.joule.2018.08.004
  202. Li Y., Li Y., Pei A., Yan K., Sun Y., Wu C.-L., Joubert L.-M., Chin R., Koh A. L., Yu Y., Perrino J., Butz B., Chu S., and Cui Y. Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy. Science, 2017, vol. 358, pp. 506–510. https://doi.org/10.1126/science.aam6014
  203. Park S.-J., Hwang J.-Y., Yoon C. S., Jung H.-G., and Sun Y.-K. Stabilization of Lithium-Metal Batteries Based on the in Situ Formation of a Stable Solid Electrolyte Interphase Layer. ACS Appl. Mater. Interfaces, 2018, vol. 10, pp. 17985–17993. https://doi.org/10.1021/acsami.8b04592
  204. Su C.-C., He M., Amine R., Chen Z., Sahore R., Rago N. D., and Amine K. Cyclic Carbonate for Highly Stable Cycling of High Voltage Lithium Metal Batteries. Energy Storage Mater., 2019, vol. 17, pp. 284–292. https://doi.org/10.1016/j.ensm.2018.11.003
  205. Zhang X.-Q., Chen X., Hou L.-P., Li B.-Q., Cheng X.-B., Huang J.-Q., and Zhang Q. Regulating Anions in the Solvation Sheath of Lithium Ions for Stable Lithium Metal Batteries. ACS Energy Lett., 2019, vol. 4, pp. 411–416. https://doi.org/10.1021/acsenergylett.8b02376
  206. Zhang X.-Q., Chen X., Cheng X.-B., Li B.-Q., Shen X., Yan C., Huang J.-Q., and Zhang Q. Highly Stable Lithium Metal Batteries Enabled by Regulating the Li+ Solvation in Nonaqueous Electrolyte. Angew. Chem. Int. Ed., 2018, vol. 57, pp. 5301–5305. https://doi.org/10.1002/anie.201801513
  207. Xiao L., Zeng Z., Liu X., Fang Y., Jiang X., Shao Y., Zhuang L., Ai X., Yang H., Cao Y., and Liu J. Stable Li Metal Anode with “Ion-Solvent-Coordinated” Nonflammable Electrolyte for Safe Li Metal Batteries. ACS Energy Lett., 2019, vol. 4, pp. 483–488. https://doi.org/10.1021/acsenergylett.8b02527
  208. Li W., Yao H., Kai Yan, Zheng G., Liang Z., Chiang Y.-M., and Cui Y. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun., 2015, vol. 6, article no. 7436. https://doi.org/10.1038/ncomms8436
  209. Aurbach D., Pollak E., Elazari R., Salitra G., Kelley C. S., and Affinito J. On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li–Sulfur Batteries. J. Electrochem. Soc., 2009, vol. 156, pp. A69–A702. https://doi.org/10.1149/1.3148721
  210. Xiong S., Xie K., Diao Y., and Hong X. Properties of surface film on lithium anode with LiNO3 as lithium salt in electrolyte solution for lithium–sulfur batteries. Electrochim. Acta, 2012, vol. 83, pp. 78–86. https://doi.org/10.1016/j.electacta.2012.07.118
  211. Fan X., Chen L., Ji X., Deng T., Hou S., Chen J., Zheng J., Wang F., Jiang J., Xu K., and Wang C. Highly Fluorinated Interphases Enable High-Voltage Li-Metal Batteries. Chem., 2018, vol. 4, pp. 174–185. https://doi.org/10.1016/j.chempr.2017.10.017
  212. Shi P., Zhang L., Xiang H., Liang X., Sun Y., and Xu W. Lithium Difluorophosphate as a Dendrite-Suppressing Additive for Lithium Metal Batteries. ACS Appl. Mater. Interfaces, 2018, vol. 10, pp. 22201–22209. https://doi.org/10.1021/acsami.8b05185
  213. Jeong S.-K., Seo H.-Y., Kim D.-H., Han H.-K., Kim J.-G., Lee Y. B., Iriyama Y., Abe T., and Ogumi Z. Suppression of dendritic lithium formation by using concentrated electrolyte solutions. Electrochem. Commun., 2008, vol. 10, pp. 635–638. https://doi.org/10.1016/j.elecom.2008.02.006
  214. Yu L., Chen S., Lee H., Zhang L., Engelhard M. H., Li Q., Jiao S., Liu J., Xu W., and Zhang J.-G. A Localized High Concentration Electrolyte with Optimized Solvents and LiDFOB Additive for Stable Lithium Metal Batteries. ACS Energy Lett., 2018, vol. 3, pp. 2059–2067. https://doi.org/10.1021/acsenergylett.8b00935
  215. Qian J., Adams B. D., Zheng J., Xu W., Henderson W. A., Wang J., Bowden M. E., Xu S., Hu J., and Zhang J.-G. Anode-Free Rechargeable Lithium Metal Batteries. Adv. Funct. Mater., 2016, vol. 26, pp. 7094–7102. https://doi.org/10.1002/adfm.201602353
  216. Ma Q., Fang Z., Liu P., Ma J., Qi X., Feng W., Nie J., Hu Y.-S., Li H., Huang X., Chen L., and Zhou Z. Improved Cycling Stability of Lithium-Metal Anode with Concentrated Electrolytes Based on Lithium (Fluorosulfonyl)(trifluoromethanesulfonyl)imide. ChemElectroChem, 2016, vol. 3, pp. 531–536. https://dx.doi.org/10.1002/celc.201500520
  217. Lu Y., Tu Z., and Archer L. A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater., 2014, vol. 13, pp. 961–969. https://doi.org/10.1038/NMAT4041
  218. Liu Q.-C., Xu J.-J., Yuan S., Chang Z.-W., Xu D., Yin Y.-B., Li L., Zhong H.-X., Jiang Y.-S., Yan J.-M., and Zhang X.-B. Artificial Protection Film on Lithium Metal Anode toward Long-Cycle-Life Lithium–Oxygen Batteries. Adv. Mater., 2015, vol. 27, pp. 5241–5247. https://doi.org/10.1002/adma.201501490
  219. Yan C., Cheng X.-B., Tian Y., Chen X., Zhang X.-Q., Li W.-J., Huang J.-Q., and Zhang Q. Dual-Layered Film Protected Lithium Metal Anode to Enable Dendrite-Free Lithium Deposition. Adv. Mater., 2018, vol. 30, article no. 1707629. https://doi.org/10.1002/adma.201707629
  220. Kim M. S., Ryu J.-H., Deepika, Lim Y. R., Nah I. W., Lee K.-R., Archer L. A., and Cho W. I. Langmuir–Blodgett artificial solid-electrolyte interphases for practical lithium metal batteries. Nat. Energy, 2018, vol. 3, pp. 889–898. https://doi.org/10.1038/s41560-018-0237-6
  221. Li N.-W., Yin Y.-X., Yang C.-P., and Guo Y.-G. An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes. Adv. Mater., 2016, vol. 28, pp. 1853–1858. https://doi.org/10.1002/adma.201504526
  222. Thompson R. S., Schroeder D. J., López C. M., Neuhold S., and Vaughey J. T. Stabilization of lithium metal anodes using silane-based coatings. Electrochem. Commun., 2011, vol. 13, pp. 1369–1372. https://doi.org/10.1016/j.elecom.2011.08.012
  223. Cheng X.-B., Yan C., Chen X., Guan C., Huang J.-Q., Peng H.-J., Zhang R., Yang S.-T., and Zhang Q. Implantable Solid Electrolyte Interphase in Lithium-Metal Batteries. Chem., 2017, vol. 2, pp. 258–270. https://dx.doi.org/10.1016/j.chempr.2017.01.003
  224. Chen D., Huang S., Zhong L., Wang S., Xiao M., Han D., and Meng Y. In Situ Preparation of Thin and Rigid COF Film on Li Anode as Artificial Solid Electrolyte Interphase Layer Resisting Li Dendrite Puncture. Adv. Funct. Mater., 2020, vol. 30, article no. 1907717. https://doi.org/10.1002/adfm.201907717
  225. Wang Z., Wang Y., Zhang Z., Chen X., Lie W., He Y.-B., Zhou Z., Xia G., and Guo Z. Building Artificial Solid-Electrolyte Interphase with Uniform Intermolecular Ionic Bonds toward Dendrite-Free Lithium Metal Anodes. Adv. Funct. Mater., 2020, vol. 30, article no. 2002414. https://doi.org/10.1002/adfm.202002414
  226. Zhai P., Wei Y., Xiao J., Liu W., Zuo J., Gu X., Yang W., Cui S., Li B., Yang S., and Gong Y. In Situ Generation of Artificial Solid-Electrolyte Interphases on 3D Conducting Scaffolds for High-Performance Lithium-Metal Anodes. Adv. Energy Mater., 2020, vol. 10, article no. 1903339. https://doi.org/10.1002/aenm.201903339
  227. Ma L., Kim M. S., and Archer L. A. Stable Artificial Solid Electrolyte Interphases for Lithium Batteries. Chem. Mater., 2017, vol. 29, pp. 4181–4189. https://doi.org/10.1021/acs.chemmater.6b03687
  228. Budi A., Basile A., Opletal G., Hollenkamp A. F., Best A. S., Rees R. J., Bhatt A. I., O’Mullane A. P., and Russo S. P. Study of the Initial Stage of Solid Electrolyte Interphase Formation upon Chemical Reaction of Lithium Metal and N-Methyl-N-Propyl-Pyrrolidinium-Bis(Fluorosulfonyl)Imide. J. Phys. Chem. C, 2012, vol. 116, pp. 19789–19797. https://doi.org/10.1021/jp304581g
  229. Basile A., Bhatt A. I., and O’Mullane A. P. Stabilizing lithium metal using ionic liquids for long-lived batteries. Nat. Commun., 2016, vol. 7, article no. 11794. https://doi.org/10.1038/ncomms11794
  230. Gao Y., Rojas T., Wang K., Liu S., Wang D., Chen T., Wang H., Ngo A. T., and Wang D. Low-temperature and high-rate-charging lithium metal batteries enabled by an electrochemically active monolayer-regulated interface. Nat. Energy, 2020, vol. 5, pp. 534–542. https://doi.org/10.1038/s41560-020-0640-7
  231. Neudecker B. J., Dudney N. J., and Bates J. B. “Lithium-Free” Thin-Film Battery with In Situ Plated Li Anode. J. Electrochem. Soc., 2000, vol. 147, pp. 517–523. https://doi.org/10.1149/1.1393226
  232. Nanda S., Gupta A., and Manthiram A. Anode-Free Full Cells: A Pathway to High-Energy Density Lithium-Metal Batteries. Adv. Energy Mater., 2021, vol. 11, article no. 2000804. https://doi.org/10.1002/aenm.202000804
  233. Xie Z., Wu Z., An X., Yue X., Wang J., Abudula A., and Guan G. Anode-free rechargeable lithium metal batteries: Progress and prospects. Energy Storage Mater., 2020, vol. 32, pp. 386–401. https://doi.org/10.1016/j.ensm.2020.07.004
  234. Tian Y., An Y., Wei C., Jiang H., Xiong S., Feng J., and Qian Y. Recently advances and perspectives of anode-free rechargeable batteries. Nano Energy, 2020, vol. 78, article no. 105344. https://doi.org/10.1016/j.nanoen.2020.105344
  235. Liu S., Jiao K., and Yan J. Prospective strategies for extending long-term cycling performance of anode-free lithium metal batteries. Energy Storage Mater., 2023, vol. 54, pp. 689–712. https://doi.org/10.1016/j.ensm.2022.11.021
  236. Wu B., Chen C., Raijmakers L. H. J., Liu J., Danilov D. L., Eichel R.-A., and Notten P. H. L. Li-growth and SEI engineering for anode-free Li-metal rechargeable batteries: A review of current advances. Energy Storage Mater., 2023, vol. 57, pp. 508–539. https://doi.org/10.1016/j.ensm.2023.02.036
  237. Jo C.-H., Sohn K.-S., and Myung S.-T. Feasible approaches for anode-free lithium-metal batteries as next generation energy storage systems. Energy Storage Mater., 2023, vol. 57, pp. 471–496. https://doi.org/10.1016/j.ensm.2023.02.040
  238. Heubner C., Maletti S., Auer H., Hüttl J., Voigt K., Lohrberg O., Nikolowski K., Partsch M., and Michaelis A. From Lithium-Metal toward Anode-Free Solid-State Batteries: Current Developments, Issues, and Challenges. Adv. Funct. Mater., 2021, vol. 31, article no. 2106608. https://doi.org/10.1002/adfm.202106608
  239. Tong Z., Bazri B., Hu S.-F., and Liu R. S. Interfacial chemistry in anode-free batteries: Challenges and strategies. J. Mater. Chem. A, 2021, vol. 9, pp. 7396–7406. https://doi.org/10.1039/d1ta00419k
  240. Xia H., Wang Y., and Fu Z. Growing cuprite nanoparticles on copper current collector toward uniform Li deposition for anode-free lithium batteries. Appl. Surf. Sci., 2023, vol. 617, article no. 156529. https://doi.org/10.1016/j.apsusc.2023.156529
  241. Zhang J., Zhang H., Deng L., Yang Y., Tan L., Niu X., Chen Y., Zeng L., Fan X., and Zhu Y. An additive-enabled ether-based electrolyte to realize stable cycling of high-voltage anode-free lithium metal batteries. Energy Storage Mater., 2023, vol. 54, pp. 450–460. https://doi.org/10.1016/j.ensm.2022.10.052
  242. Hagos T. M., Berhe G. B., Hagos T. T., Bezabh H. K., Abrha L. H., Beyene T. T., Huang C.-J., Yang Y.-W., Su W.-N., Dai H., and Hwang B.-J. Dual electrolyte additives of potassium hexafluorophosphate and tris(trimethylsilyl) phosphite for anode-free lithium metal batteries. Electrochim. Acta, 2019, vol. 316, pp. 52–59. https://doi.org/10.1016/j.electacta.2019.05.061
  243. Hagos T. T., Su W.-N., Huang C.-J., Thirumalraj B., Chiu S.-F., Abrha L. H., Hagos T. M., Bezabh H. K., Berhe G. B., Tegegne W. A., Cherng J.-Y., Yang Y.-W., and Hwang B.-J. Developing high-voltage carbonate-ether mixed electrolyte via anode-free cell configuration. J. Power Sources, 2020, vol. 461, article no. 228053. https://doi.org/10.1016/j.jpowsour.2020.228053
  244. Wang M. J., Carmona E., Gupta A., Albertus P., and Sakamoto J. Enabling “lithium-free” manufacturing of pure lithium metal solid-state batteries through in situ plating. Nat. Commun., 2020, vol. 11, pp. 5201–5209. https://doi.org/10.1038/s41467-020-19004-4
  245. Assegie A. A., Cheng J.-H., Kuo L.-M., Su W.-N., and Hwang B.-J. Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery. Nanoscale, 2018, vol. 10, pp. 6125–6138. https://doi.org/10.1039/C7NR09058G
  246. Alvarado J., Schroeder M. A., Pollard T. P., Wang X., Lee J. Z., Zhang M., Wynn T., Ding M., Borodin O., Ying Shirley Meng Y. S., and Xu K. Bisalt Ether Electrolytes: A Pathway Towards Lithium Metal Batteries with Ni-rich Cathodes. Energy Environ. Sci., 2019, vol. 12, pp. 780–794. https://doi.org/10.1039/C8EE02601G
  247. Umh H. N., Park J., Yeo J., Jung S., Nam I., and Yi J. Lithium metal anode on a copper dendritic superstructure. Electrochem. Commun., 2019, vol. 99, pp. 27–31. https://doi.org/10.1016/j.elecom.2018.12.015
  248. Chen J., Xiang J., Chen X., Yuan L., Li Z., and Huang Y. Li2S-Based Anode-Free Full Batteries with Modified Cu Current Collector. Energy Storage Mater., 2020, vol. 30, pp. 179–186. https://doi.org/10.1016/j.ensm.2020.05.009
  249. Chen W., Salvatierra R. V., Ren M., Chen J., Stanford M. G., and Tour J. M. Laser-Induced Silicon Oxide for Anode-Free Lithium Metal Batteries. Adv. Mater., 2020, vol. 32, article no. 2002850. https://doi.org/10.1002/adma.202002850
  250. Niu C., Lee H., Chen S., Li Q., Du J., Xu W., Zhang J.-G, Whittingham M. S., Xiao J., and Liu J. High-energy lithium metal pouch cells with limited anode swelling and long stable cycles. Nat. Energy, 2019, vol. 4, pp. 551–559. https://doi.org/10.1038/s41560-019-0390-6
  251. Chang Z., Yang H., Zhu X., He P., and Zhou H. A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments. Nat. Commun., 2022, vol. 13, pp. 1510–1521. https://doi.org/10.1038/s41467-022-29118-6
Received: 
22.05.2023
Accepted: 
20.06.2023
Published: 
30.06.2023