ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


ёмкость

Lithiation of electrodeposited silicon films

Lithium-ion batteries with improved performance are increasingly in demand in various fields. Silicon-based materials are one of the most actively studied materials, because they allow increasing the discharge capacity of the anode. In this work, we continue studying the behavior of the thin-film silicon anodes inside the anode half-cell of a lithium-ion battery in the conditions of limited charge capacity to 1000 and 4000 mA·h/g.

ЛИТИРОВАНИЕ ЭЛЕКТРООСАЖДЕННЫХ ПЛЕНОК КРЕМНИЯ

Литий-ионные источники тока с улучшенными характеристиками все больше востребованы в различных сферах. Одними из наиболее активно изучаемых являются материалы на основе кремния, позволяющие повысить емкость анода. В настоящей работе продолжено изучение поведения тонкопленочных кремниевых анодов в составе анодного полуэлемента ли-тий-ионного источника тока в условиях ограничения зарядной емкости до 1000 и 4000 мАч/г.

Production and electrochemical properties of electrode material based on nitrogen-doped carbon nanotubes for hybrid supercapacitors

A method for producing nitrogen-doped carbon nanotubes was tested. Polyaniline, chemically synthesized on the surface of nanotubes with subsequent carbonization, was used as a source of nitrogen. The electrochemical characteristics of the electrodes based on the obtained carbon material for the hybrid supercapacitors with the acidic electrolyte were studied. It was shown that nitrogen doping of carbon nanotubes increases the capacitive characteristics of the electrodes. 

Pyrolized carbon electrode material for supercapacitors obtained from organic raw materials of vegetable nature

In this paper we investigate carbon materials prepared from different organic raw materials of vegetable nature by the method of pyrolysis. Properties of obtained carbon substances are established by the methods of impedance spectroscopy, voltamperometry, and chronoamperometry. Starting from the data of electron paramagnetic resonance, impedance spectroscopy and an analysis of the Regon diagrams it is concluded that the obtained carbon materials contain carbon nanostructures in the form of bungles of multiwall nanotubes.

Generalized model of capacitance from discharge current dependence in nickel-cadmium batteries

For nickel-cadmium batteries of stationary application, a global empiric correlation C(i) describing the dependency of released capacitance by the batteries at different discharge currents was suggested, which is true for batteries of any capacitance and any mode of discharge (H, M, L). The global correlation C(i) can be described by generalized Peukert's equation, Korovin-Skundin's equation, probability integral, and porous electrode equation with accuracy sufficient for practical application.

Pyrolized polyacrylonitrile as a feasible electrode material for electrochemical power sources

In the current paper electrospun nanofiber mats were derived from polyacrylonitrile (PAN). The temperature influence on the volumetric and surface composition of the resulting pyropolymers was studied by means of elemental analysis and X-ray photoelectron spectroscopy.

Influence of the Method of Introducing Cobalt Into the Active Mass of Positive Metal-lock Electrodes of Nickel-Zink-batteries on Their Capacitance Characteristics

It is experimentally established that the use of Ni-Zn batteries as positive oxide-Ni electrodes of metal-cell electrodes on porous polymer bases leads to a significant decrease in their capacity. Reduce zincate poisoning of positive electrodes of this type is possible with the introduction of cobalt hydroxide into the active substance. Various methods of introducing an activating additive into the active mass of the electrode have been studied.

Электрохимические свойства композитных электродов, содержащих наночастицы солей меди

The energetic properties of the new composite electrode materials suitable for electrochemical capacitors were investigated. Composite electrodes were made using Norit A activated carbon and synthesized sparingly soluble copper salts such as copper iodide(I) and hexacyanoferrates (II), etc. (III). The composition of the salts was confirmed by elemental analysis and the particle size was determined by the Scherrer equation using the data of X­-ray phase analysis.