ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)

For citation:

Berezhnaya A. G., Chernyavina V. V., Lepeshkin I. O. Электрохимические свойства композитных электродов, содержащих наночастицы солей меди. Electrochemical Energetics, 2020, vol. 20, iss. 3, pp. 132-?. DOI: 10.18500/1608-4039-2020-20-3-132-145, EDN: WBMGTK

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 69)
Article type: 

Электрохимические свойства композитных электродов, содержащих наночастицы солей меди

Berezhnaya Aleksandra Grigor'evna, Southern Federal University
Chernyavina Valentina Vladimirovna, Southern Federal University
Lepeshkin Igor Olegovich, Southern Federal University

The energetic properties of the new composite electrode materials suitable for electrochemical capacitors were investigated. Composite electrodes were made using Norit A activated carbon and synthesized sparingly soluble copper salts such as copper iodide(I) and hexacyanoferrates (II), etc. (III). The composition of the salts was confirmed by elemental analysis and the particle size was determined by the Scherrer equation using the data of X­-ray phase analysis. The electrochemical characteristics of the electrodes were determined with the help of cyclic voltammetry, charge­discharge galvanostatic curves, and impedance spectroscopy. It was found that the composite materials containing 5–30 wt.% of copper iodide and copper hexacyanoferrate (II) had lower capacitive characteristics compared with the pure carbon electrode. The introduction of double hexacyanoferrates (II), copper (III) and potassium into the electrode material led to the increase in the specific capacitance by 30 and 20% respectively, compared with a carbon electrode.


1. Barsukov I. V., Johnson C., Doninger E., Barsukov V. Z. New Carbon Based Materials for Electrochemical Energy Storage Systems : Batteries, Supercapacitors and Fuel Cells (NATO Science Series II : Mathematics, Physics and Chemistry). New York, Springer, 2006. 297 p.

2. Frackowiak E., Beguin F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon, 2001, vol. 39, pp. 937–950. DOI:

3. Burke A., Miller M. The power capability of ultracapacitors and lithium batteries for electric and hybrid vehicle applications. J. Power Sources, 2011, vol. 196, pp. 514–522. DOI:

4. Yamada M., Arai M., Kurihara M., Sakamoto M., Miyake M. Synthesis and Isolation of Cobalt Hexacyanoferrate/Chromate Metal Coordination Nanopolymers Stabilized by Alkylamino Ligand with Metal Elemental Control. J. Am. Chem. Soc., 2004, vol. 126, iss. 31, pp. 9482–9483. DOI: https://doi.org10.1021/ja0476866

5. Cai C. X., Xue K. H., Xu S. M. Electrocatalytic activity of a cobalt hexacyanoferrate modified glassy carbon electrode toward ascorbic acid oxidation. J. Electroanal. Chem., 2000, vol. 486, no. 2, pp. 111–118. DOI:

6. Vaucher S., Fielden J., Li M., Dujardin E., Mann S. Molecule-based magnetic nanoparticles : synthesis of cobalt hexacyanoferrtaes, cobalt pentacyanoitrosylferrate, and chromium hexacyanochromate coordination polymers in water-in-oil microemulsion. Nano Letters, 2002, vol. 2, iss. 3, pp. 225–229. DOI:

7. Chen S. M. Characterization and electrocatalytic properties of cobalt hexacyanoferrate films. Electrochim. Acta, 1998, vol. 43, iss. 21–22, pp. 3359–3369. DOI:

8. Chen S. M., Lu M. F., Lin K. C. Preparation and characterization of ruthenium oxide/hexacyanoferrate and ruthenium hexacyanoferrate mixed films and their electrocatalytic properties. J. Electroanal. Chem., 2005, vol. 579, iss. 1, pp. 163–174. DOI:

9. Sinha S., Humphery B. D., Bocarsly A. B. Reaction of Nickel Electrode Surfaces with Metal-Cyanide Anionic Complexes : The Formation of Precipitated Surfaces. Inorg. Chem., 1984, vol. 23, iss. 2, pp. 203–212. DOI:

10. Yang Y., Yan Y., Chen X., Zhai W., Xu Y., Liu Y. Investigation of a Polyaniline-Coated Copper Hexacyanoferrate Modified Glassy Carbon Electrode as a Sulfite Sensor. Electrocatalysis, 2014, vol. 5, iss. 4, pp. 344–353. DOI:

11. Siperko L. M., Kuwana T. Electrochemical and Spectroscopic Studies of Metal Hexacyanometalate Films. J. Electrochem. Soc., 1983, vol. 130, iss. 2, pp. 396–402. DOI:

12. Neff V. D. Electrochemical Oxidation and Reduction of Thin Films of Prussian Blue. J. Electrochem. Soc., 1978, vol. 125, pp. 886–887. DOI:

13. Eftekhari A. Deposition of stable electroactive films of polynuclear cyanides on to silicon surface. J. Electroanal. Chem., 2003, vol. 558, pp. 75–82. DOI:

14. Karyakin A. A., Gitelmacher O. V., Karyakina E. E. Prusian Blue based first generation biosensor. A sensitive amperometric electrode for glucose. Anal. Chem., 1995, vol. 67, iss. 14, pp. 2419–2423. DOI:

15. Beheir S. G., Benyamin K., Mekhailf M. Chemical precipitation of cesium from waste solutions with iron (II) hexacyanocobaltate (III) and triphenylcyanoborate. J. Radioanal Nucl. Chem., 1998, vol. 232, pp. 147–150. DOI:

16. Kaye S. S., Long J. R. Hydrogen Storage in the Dehydrated Prussian Blue Analogues M3[Co(CN)6]2 (M = Mn, Fe, Co, Ni, Cu, Zn). J. Am. Chem. Soc., 2005, vol. 127, iss. 18, pp. 6506–6507. DOI:

17. Shankaran D. S., Narayanan S. S. A comparative study of the electrocatalytic ac-tivities of some metal hexacyanoferrates for the oxidation of hydrazine. Fresenius J. Anal. Chem., 1999, vol. 364, pp. 686–689. DOI:

18. Kingo Itaya, Isamu Uchida, Vernon D. Neff Electrochemistry of polynuclear transition metal cyanides prussian blue and its analogs. Acc. Chem. Res., 1986, vol. 19, pp. 162–168. DOI:

19. Garjonyte R., Malinauskas A. Electrocatalytic reactions of hydrogen peroxide at carbon paste electrodes, modified by some metal hexacyanoferrates. Sens. Actuators B, 1998, vol. 46, iss. 3, pp. 236–241. DOI:

20. Garjonyte R., Malinauskas A. Operational stability of amperometric hydrogen peroxide sensors, based on ferrous and copper hexacyanoferrates. Sens. Actuators B, 1999, vol. 56, pp. 93–97. DOI:

21. Nielsen P., Dresow B., Heinrich H. C. In vitro Study of 137Cs Sorption by Hex-acyanoferrates (II). Z. Naturforsch. B, 1987, vol. 42, pp. 1451–1460. DOI:

22. Pabst W., Gregorova E. Characterization of Particles and Particle Systems. Prague, Institute of Chemical Technology, 2007. 122 p. Available at: (accessed 24 March 2020).

23. Kim H., Hong J., Park K. Y., Kim H., Kim S. W., Kang K. Aqueous rechargeable Li and Na ion batteries. Chemical Reviews, 2014, vol. 114, iss. 23, pp. 11788–11827. DOI:

24. Andrieu X., Crepy G., Josset L. High power density electrodes for Carbon supercapacitor applications. In: Proceedings of the Third International Seminar on Double Layer Capacitors and Similar Energy Storage Devices, Deerfield Beach (FL), Florida Educational Seminars Inc., December 1993, pp. 1469–1476.

25. Conway B. E. Transition from “Supercapacitor” to “Battery” behavior in electrochemical Energy Storage. J. Electrochem. Soc., 1991, vol. 138, pp. 1539–1548.

26. EIS Spectrum Analyser. On-line Help. Available at: (accessed 24 March 2020).