ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Davydova E. S., Rychagov A. Y., Razorenov D. Y., Tarasevich M. R., Ponomarev I. I., Ponomarev I. I. Pyrolized polyacrylonitrile as a feasible electrode material for electrochemical power sources. Electrochemical Energetics, 2013, vol. 13, iss. 3, pp. 119-135. DOI: 10.18500/1608-4039-2013-13-3-119-135, EDN: RRUPAF

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 102)
Language: 
Russian
Heading: 
Article type: 
Article
EDN: 
RRUPAF

Pyrolized polyacrylonitrile as a feasible electrode material for electrochemical power sources

Autors: 
Davydova Elena Stanislavovna, Institute of Physical Chemistry and Electrochemistry of A. N. Frumkina of RAS
Rychagov Aleksei Yur'evich, Institute of Physical Chemistry and Electrochemistry of A. N. Frumkina of RAS
Razorenov Dmitrii Yur'evich, Institute of Physical Chemistry and Electrochemistry of A. N. Frumkina of RAS
Tarasevich Mikhail Romanovich, Institute of Physical Chemistry and Electrochemistry of A. N. Frumkina of RAS
Ponomarev Ivan Igorevich, Institute of Physical Chemistry and Electrochemistry of A. N. Frumkina of RAS
Ponomarev Igor' Igorevich, Institute the Elementoorganicheskikh of Connections of A. N. Nesmeyanov of RAS
Abstract: 

In the current paper electrospun nanofiber mats were derived from polyacrylonitrile (PAN). The temperature influence on the volumetric and surface composition of the resulting pyropolymers was studied by means of elemental analysis and X-ray photoelectron spectroscopy. Rotating disc electrode (RDE) and rotating ring disc electrode (RRDE) methods were used to determine the catalytic properties of PAN pyropolymers, derived at carbonization temperature interval of 600–1200°C, as well as composite PAN/support catalysts, carbonized at 900°C, in the oxygen reduction reaction in H2SO4 и KOH solutions. The methods of cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic polarization were utilized to characterize the charge capacitive properties. An equivalent scheme modeling the electrochemical response of PAN pyropolymer in H2SO4 solution was proposed. An assumption was made of interrelation between the PAN-T catalytic activity and the occurrence of condensed parquet aromatic structure comprising of nitrogen-carbon bonds. Evidence was given that Fe atoms play the key role in the synthesis of active non-precious catalysts with high selectivity towards the 4-electron O2 reduction. The possibility of the catalysts synthesis for 2-electron ORR without the use of metal precursors was evidently shown. Prominent correlation of capacitive and catalytic properties for these materials was observed in H2SO4 solution. The optimal PAN pyropolymers synthesis temperature was determined to be in the range of 750–950°C. The mats of PAN-T were shown to be feasible as the negative electrodes of supercapacitors.

Reference: 

1. Shindo A. Studies on graphite fibers. Osaka: Reports of the Government Industrial Research Institute, 1961. Report № 317.
2. Pat. 1110791-A United Kingdom, 161/176 X. The production of carbon fibres / Johnson W., Phillips L. N., Watt W. Publ. 24.04.1968.
3. Варшавский В. Я. Углеродные волокна. М.: Изд-во Варшавский, 2007.
4. Morgan P. Carbon fibers and their composites. Boca Raton, London; New York, Singapore: Taylor & Francis Group, 2005.
5. Gupta S., Tryk D., Bae L., Aldred W., Yeager E. // J. Appl. Electrochem. 1989. Vol. 19. P. 19–27.
6. Martins Alves M. C., Dodelet J.-P., Guay D., Ladouceur M., Tourillon G. // J. Phys. Chem. 1992. Vol. 96. P. 10898–10905.
7. Ohms D., Herzog S., Franke R., Neumann V., Wiesener K., Gamburcev S., Kaisheva A., Iliev I. // J. Power Sources. 1992. Vol. 38. P. 327–334.
8. Wu J., Higgins D., Chen Z. // ECS Trans. 2012. Vol. 50. P. 1807–1814.
9. Wu J., Park H. W., Yu A., Higgins D., Chen Z. // J. Phys. Chem. C. 2012. Vol. 116. P. 9427–9432.
10. Jeong B., Uhm S., Lee J. // ECS Trans. 2010. Vol. 33. P. 1757–1767.
11. Nakagawa N., Abdelkareem M. A., Takino D., Ishikawa T., Tsujiguchi T. // ECS Trans. 2011. Vol. 41. P. 2219–2229.
12. Gourec P., Miousse D., Tran-Van F., Dao L. H. // J. New Mater. Electrochem. Syst. 1996. Vol. 2. P. 221–226.
13. Wang K.-P., Teng H. // Carbon. 2006. Vol. 44. P. 3218–3225.
14. Ania C. O., Khomenko V., Raymundo-Pinero E., Parra J. B., Beguin F. // Adv. Funct. Mater. 2007. Vol. 17. P. 1828–1836.
15. Gavrilov N., Pasti I. A., Mitric M., Travas-Sejdic J., Citic-Marjanovic G., Mentus S. N. // J. Power Sources. 2012. Vol. 220. P. 306–316.
16. Gavrilov N., Pasti I. A., Vujkovic M., Travas-Sejdic J., Citic-Marjanovic G., Mentus S. N. // Carbon. 2012. Vol. 50. P. 3915–3927.
17. Ye S., Vijh A. K., Dao L. H. // J. Electrochem. Soc. 1996. Vol. 143. P. L7–9.
18. Пономарёв И. И., Пономарёв Ив. И., Филатов И. Ю., Филатов Ю. Н., Разорёнов Д. Ю., Волкова Ю. А., Жигалина О. М., Жигалина В. Г., Гребенёв В. В., Киселёв Н. А. // Докл. АН. 2013. Т. 448, № 6. С. 1–5.
19. Давыдова Е. С., Рычагов А. Ю., Пономарёв Ив. И., Пономарёв И. И. // Электрохимия. 2013. Т. 49, № 10. С. 1127–1128.
20. Gulyaev A. I., Rykunov V. A., Tenchurin T.Kh., Filatov Yu. N. // Plast. Massy. 2009. № 10. Р. 29–33.
21. Давыдова Е. С. // Электрохимия. 2013. Т. 49, № 8. С. 1–9.
22. Рычагов А. Ю., Вольфкович Ю. М. // Электрохимия. 2009. Т. 45, № 2. С. 323–331.
23. Schmidt T. J., Gasteiger H. A. // Handbook of fuel cells – Fundamental. Technology and Application. West Sussex: John Wiley & Sons, 2003. Vol. 2. P. 316–333.
24. Borja-Arco E., Jimenez Sandoval O., Escalante-Garcia J., Sanoval-Gonzalez A. // Intern. J. Hydrog. Energy. 2011. Vol. 36. P. 103–110.
25. Davis R. E., Horvath G. L., Tobias C. W. // Electrochim. Acta. 1967. Vol. 112. P. 287–297.
26. Нефёдов В. И. Рентгеноэлектронная спектроскопия химических соединений. М: Химия, 1984.
27. Soto G., Samano E. C., Machorro R., Castillion F. F., Farias M. H., Cota-Araiza L. // Superficies y Vacio. 2002. Vol. 15. P. 34–39.
28. Li P., Chen D., Dai Y.-C., Yuan W.-K. // Carbon. 2007. Vol. 45. P. 785–796.
29. Ye S., Vijh A. K., Dao L. H. // J. Electrochem. Soc. 1997. Vol. 144, № 1. P. 90–95.
30. Mendoza-Sanchez B., Rasche B., Nicolosi V., Grant P. S. // Carbon. 2013. Vol. 52. P. 337–346.
31. Рычагов А. Ю., Вольфкович Ю. М. // Электрохимия. 2007. Т. 43, № 11. С. 1343–1349.
32. Andreas H. A., Conway B. E. // Electrochim. Acta. 2006. Vol. 51. P. 6510–6520.
33. Eliad L., Salitra G., Pollak E., Soffer A., Aurbach D. // Langmuir. 2005. Vol. 21. P. 10615–10623.
34. Kawaguchi M., Itoh A., Yagi S., Oda H. // J. Power Sources. 2007. Vol. 172. P. 481–486.
35. Gouerec P., Talbi H., Miousse D., Tran-Van F., Dao L. H., Lee K. H. // J. Electrochem. Soc. 2001. Vol. 148. P. A94–A101.
36. Ofer D., Crook R. M., Wrighton M. S. // J. Amer. Chem. Soc. 1990. Vol. 112. P. 7869.
37. Tarasevich M. R., Sadkowski A., Yeager E. // Comprehensive treatise of electrochemistry / eds B. E. Conway, J.O'M. Bockris, E. Yeager, S. U. M. Khan, R. E. White. New York: Plenum Press, 1983. Vol. 7. P. 301–398.
38. Biddinger E. J., von Deak D., Singh D., Marsh H., Tan B., Knapke D. S., Ozkan U. S. // J. Electrochem. Soc. 2011. Vol. 158. P. B402–409.
39. Tryk D. A., Cabrera C. R., Fudjishima A., Spataru N. // Fundamental understanding of electrode processes in memory of professor Ernst B. Yeager / eds J. Prakash, D. Chu, D. Scherson, M. Enayetullah, I. Tae Bae. Pennington, New Jersey, 2005. P. 45–57.
40. Park J. H., Ju Y. W., Park S. H., Jung H. R., Yang K. S., Lee W. J. // J. Appl. Electrochem. 2009. Vol. 39. P. 1229–1236.
41. Магрупов М. А. // Успехи химии. 1981. Т. L., вып. 11. С. 2106–2131.

Received: 
18.07.2013
Accepted: 
20.09.2013
Published: 
20.09.2013