ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Fedotov D. B., Yalyushev N. I., Maftei A. N., Makovetskii D. V. Diagnostic of Lithium-Thionyl Chloride Cells Self-Discharge. Electrochemical Energetics, 2017, vol. 17, iss. 1, pp. 9-18. DOI: 10.18500/1608-4039-2017-17-1-9-18, EDN: ZCTEIB

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 135)
Language: 
Russian
Article type: 
Article
EDN: 
ZCTEIB

Diagnostic of Lithium-Thionyl Chloride Cells Self-Discharge

Autors: 
Fedotov Dmitrii Borisovich, JSC IF Orion-HIT
Yalyushev Nikolai Ismailovich, The Southern Russian State Polytechnical University (NPI) of M. I. Platov
Maftei Aleksandr Nikolaevich, The Southern Russian State Polytechnical University (NPI) of M. I. Platov
Abstract: 

DOI: https://doi.org/10.18500/1608-4039-2017-17-1-9-18

The problem of lithium-thionyl chloride electrochemical cell state diagnostics is described. Their after-storage performance predictability is presented. Self-discharge value diagnostics is a key issue in electrochemical cells manufacturing and utilization. The article presents major modern methods of electrochemical cell residual capacity estimation. A new method of Li/SOCl2 system self-discharge diagnostics is proposed; it is based on the measurement of initial section voltage – current strength ratio.

The voltage-ampere dependence of lithium-thionyl chloride cell residual capacity and the current values at the initial element section is determined.

Reference: 

1. Device indicating the time remaining of the useful of battery. Pat. US, no. 4625175, G01 N27/46. Smith Leonard S.; Recreating Technologies Inc. Smith Leonard S. 1986.

2. Sposob kontrolia razriazhennosti starternogo serebriano-tsinkovogo akkumuliatora i ustoroistva dlia ego osushchestvleniia [Method for controlling the discharge of a starter silver-zinc battery and a device for its implementation.]. A.s. SSSR, no. 1075334. H01 М10/42, 10/32. V. L. Geras’kov. 1984 (in Russian).

3. Electronic battery testing device and method for testing batteries. Pat. US, no. 6037778, G01 N27/416. Makhija Surender K. 2000.

4. Battery Capacity Measurement. Pat. UK no. 2350686, G01 R31/36. Anbuku Adnan, Pascoe Philip. 2000.

5. Battery pack, battery remaining capacity detection method and application device driven with battery pack as power source. Pat. US, no. 6064182, H01 М10/44. Eguchi Yasuhito. 2000.

6. Sandifer James R. Slate-of-charge measurement of the litium-carbon monofluoride battery by chronopotentiometry. J. Appl. Electrochem., 1986, vol. 16, no. 2, pp. 307–308.

7. Sposob opredeleniia emkosti khimicheskogo istochnika toka [Method for determining the capacity of a power source.] A.s. SSSR, no. 997143, H01 M10/48. Solo’ev V. M. 1983 (in Russian).

8. Metverfahren zur Bestimmung der Qualitat einer Batterie. Application DE no. 3516498, G01 M31/36. Tuphorn Hans. 1986.

9. Sposob opredeleniia ostatochnoi emkosti svintsovogo akkumuliatora [Method for determining the residual capacity of a lead-acid battery]. Patent RF, no. 2182388, H01M 10/42, G01 R31/36. M. D. Maslov. 2002 (in Russian).

10. Sposob opredeleniia ostatochnoi emkosti khimicheskogo istochnika toka [Method for determining the residual capacity of a power source]. A.s. no. 1003208, SSSR, H01 M10/42. K. L. Kozintsev 1983 (in Russian).

11. Shekhtman A. Z. Spektr nacha’nikh vnutrennikh soprotivlenii litievogo istochnika toka pri razriade tokom razlichnoi plotnosti [Spectrum of initial internal resistances of a lithium current source at discharge by a current of various density]. Elektrokhimiya [Electrochim], vol. 27, no. 2, pp. 284–286 (In Russian).

12. Automtic battery detection system and method for detecting a rechargeable battery with low remaining charge. Application Ep, no. 1065774, H02 J7/00. D. Fischer, S. Carkner. 2001.

13. Electronic battery tester. Pat. US, no. 5914605, G01 N27/416, H01 M10/48. Bertness Kevin I. 1999.

14. Vetter Mike., Miels Torsten. Determining state of charge of battery connected to charger involves forming ratio of battery voltage and load current differences for two different charger output voltages at same temperature. Application DE, no. 19903239, G01 R31/36, Н01 М10/44, 2000.

15. Optimized method for determining remaining life cycles in a rechargeable battery. Pat. US, no. 6023150, H01 M10/44. Demuro David M., Patino J., Simpson Rassel L. 2000.

16. Lithium cell having continuous depletion gauge. Patent US, no. 4515873, H01 M10/48. De Haan Abel. 1985.

17. Electrochemical cell having continuous depletion gauge. Pat. US, no. 4544613, H01 M10/48. De Haan Abel. 1985.

18. Vorrichtung zur Bestimmung des Ladungszust and eseines Akkumulators. Pat. DE, no. 2016031, H01 M10/48. Piske Gunter. 1979.

19. Method of determining battery life. Pat. US, no. 4438182, H01 M6/00. Papaxian Harold A. 1984.

20. Dispositif et procede de measure externe, sans contact electrique de l’etat de charge d’un accumulateurelectrique. Application FR, no. 27379223, G01 R31/36. P. Willman, A. Metrot, V. Mancier. 1997.

21. Use of ir (thermal) imaging for determining cell diagnostic. Pat. US, no. 5483068, G01 J5/00, G01 N25/72, H01 M10/48. Monlhton R. D., Chabner Gill B. 1999.

22. Nizhnikovskii E. A. Nerazrushaiushchii kontrol’ kachestva khimicheskogo istochnika toka s ispol’zovaniem metoda mikrokalorii [Microcalorimetry as non-destructive test for batteries]. Elektrokhimicheskaia energetika [Electrochemical energetics], 2003, vol. 3, no. 2, pp. 80–85 (in Russian).

Received: 
26.01.2017
Accepted: 
26.01.2017
Published: 
27.02.2017