ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Leonova A. M., Leonova N. M., Laptev M. V., Suzdal'tsev A. V. Lithiation of electrodeposited silicon films. Electrochemical Energetics, 2025, vol. 25, iss. 3, pp. 136-147. DOI: 10.18500/1608-4039-2025-25-3-136-147, EDN: XARINE

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 88)
Language: 
Russian
Article type: 
Article
UDC: 
544.643
EDN: 
XARINE

Lithiation of electrodeposited silicon films

Autors: 
Leonova Anastasiya Maksimovna, Ural Federal University named after the first President of Russia B. N. Yeltsin
Leonova Nataliya Maksimovna, Ural Federal University named after the first President of Russia B. N. Yeltsin
Laptev Michael Vyacheslavovich, Institute of high-temperature Electrochemistry UB of RAS
Suzdal'tsev Andrei Viktorovich, Ural Federal University named after the first President of Russia B. N. Yeltsin
Abstract: 

Lithium-ion batteries with improved performance are increasingly in demand in various fields. Silicon-based materials are one of the most actively studied materials, because they allow increasing the discharge capacity of the anode. In this work, we continue studying the behavior of the thin-film silicon anodes inside the anode half-cell of a lithium-ion battery in the conditions of limited charge capacity to 1000 and 4000 mA·h/g. Samples of silicon films, electrodeposited from the molten KI-KF-KCl-K2SiF6 electrolyte with the temperature of 700°C on glassy carbon in the potentiostatic mode, were used as the objects of the research. It was noted that limiting the charge capacity makes it possible to increase the number of cycles maintaining a relatively high discharge capacity and to increase the operational life of the electrodeposited silicon films. Applying the C/10 cycling current and limiting the charge capacity to 4000 mA·h/g, the discharge capacity of the samples was 3850–3930 mA·h/g, and using the 2C cycling current it was up to 3000 mA·h/g.

Acknowledgments: 
The work was carried out within the framework of the agreement No. 075-03-2025-258 dated January 17, 2025 (the topic in unified state information system accounting research, development and technological works – FEUZ-2025-0002).
Reference: 
  1. Li S. A., Ryzhikova E. V., Skundin A. M. The active materials ratio in electrodes of lithiumion batteries: Optimisation problems. Electrochemical Energetics, 2020, vol. 20, no. 2, pp. 68–72 (in Russian). https://doi.org/10.18500/1608-4039-2020-20-2-68-72
  2. Savina A. A., Boev A. O., Orlova E. D., Morozov A. V., Abakumov A. M. Nickel as a key element in the future energy. Russian Chemical Reviews, 2023, vol. 92, art. RCR5086. https://doi.org/10.59761/RCR5086
  3. Zhuravlev V. D., Shchekoldin S. I., Andrjushin S. E., Sherstobitova E. A., Nefedova K. V., Bushkova O. V. Electrochemical characteristics and phase composition of lithium manganese oxide spinel with excess lithium Li1+xMn2O4. Electrochemical Energetics, 2020, vol. 20, no. 3, pp. 157–170 (in Russian). https://doi.org/10.18500/1608-4039-2020-20-3-157-170
  4. Zakharova G. S., Fattakhova Z. A., Trofimov A. A. Microwave-assisted hydrothermal synthesis of MnO/C composite in the presence of ascorbic acid. Russian Journal of Inorganic Chemistry, 2024, vol. 69, pp. 1844–1852. https://doi.org/10.1134/S0036023624602903
  5. Bratkov I. V., Ivanov A. D., Kolchin A. D., Savitskiy I. A. Obtaining a composite material “spherical graphite–SnO2”. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.], 2025. vol. 68, no. 1, pp. 55–62 (in Russian). https://doi.org/10.6060/ivkkt.20256801.7099
  6. Zhang Y., Wei Zh., Batuk M., Hadermann J., Filatov A., Chang J., Han H., Abakumov A., Dikarev E. Lithium-rich, oxygen-deficient spinel obtained through low-temperature decomposition of heterometallic molecular precursor. Energy Materials, 2025, vol. 5, art. 500063. https://doi.org/10.20517/energymater.2024.213
  7. Galashev A. Y. Molecular dynamic study of the applicability of silicene lithium ion battery anodes: A review. Electrochemical Materials and Technologies, 2023, vol. 2, art. 20232012. https://doi.org/10.15826/elmattech.2023.2.012
  8. Zhang Zh., Wu Y., Mo Z., Lei X., Xie X., Xue X., Qin H., Jiang H. Research progress of siliconbased anode materials for lithium-ion batteries. RSC Advances, 2025, vol. 15, art. 10731. https://doi.org/10.1039/d5ra01268f
  9. Korchun A. V., Evshchik E. Yu., Baskakov S. A., Bushkova O. V., Dobrovolsky Y. A. Influence of a binder on the electrochemical behaviour of Si/RGO composite as negative electrode material for Li-ion batteries. Chimica Techno Acta, 2020, vol. 7, pp. 259–268. https://doi.org/10.15826/chimtech.2020.7.4.21 
  10. Leonova N. M., Leonova A. M., Bashirov O. A., Lebedev A. S., Trofimov A. A., Suzdaltsev A. V. C/SiC-based anodes for lithium-ion current sources. Electrochemical Energetics, 2023, vol. 23, no. 1, pp. 41–50 (in Russian). https://doi.org/10.18500/1608-4039-2023-23-1-41-50, EDN: ZFLYPF
  11. Zavorin A. V., Moseenkov S. I., Stolyarova S. G., Okotrub A. V., Kuznetsov V. L. Investigation of composites based on MWCNTs and Si as an anode material in lithium-ion batteries. Siberian Journal of Physics, 2023, vol. 18, no. 2, pp. 66–75 (in Russian) https://doi.org/10.25205/2541-9447-2023-18-2-66-75
  12. Yasuda K., Nohira T. Electrochemical production of silicon. High Temperature Materials and Processes, 2022, vol. 41, pp. 247–278. https://doi.org/10.1515/htmp-2022-0033
  13. Salah M., Murphy P., Hall C., Francis C., Kerr R., Fabretto M. Pure silicon thin-film anodes for lithium-ion batteries: A review. J. Power Sources, 2019, vol. 414, pp. 48–67. https://doi.org/10.1016/j.jpowsour.2018.12.068
  14. Leonova A. M., Leonova N. M., Suzdaltsev A. V. Behavior of electrodeposited silicon film on glassy carbon during lithiation and delithiation. Electrochemical Energetics, 2024, vol. 24, no. 3, pp. 150–160 (in Russian). https://doi.org/10.18500/1608-4039-2024-24-3-150-160, EDN: ZPMQZQ
  15. Laptev M. V., Isakov A. V., Grishenkova O. V., Vorob’ev A. S., Khudorozhkova A. O., Akashev L. A., Zaikov Yu. P. Electrodeposition of thin silicon films from the KF–KCl–KI–K2SiF6 melt. Journal of the Electrochemical Society, 2020, vol. 167, art. 042506. https://doi.org/10.1149/1945–7111/ab7aec
  16. Sethuraman V. A., Srinivasan V., Newman J. Analysis of electrochemical lithiation and delithiation kinetics in silicon. Journal of the Electrochemical Society, 2013, vol. 160, pp. A394–A403. https://doi.org/10.1149/2.008303jes
  17. Domi Y., Usui H., Sakaguchi H. Analysis of the interfacial reaction between Si-based anodes and electrolytes in Li-ion batteries. Chemical Communications, 2024, vol. 60, art. 12986. https://doi.org/10.1039/d4cc04134h
  18. Liu B., Luo M., Wang Z., Passolano Ch., Shaw L. On the specific capacity and cycle stability of Si@void@C anodes: Effects of particle size and charge/discharge protocol. Batteries, 2022, vol. 8, art. 10. https://doi.org/10.3390/batteries8100154
  19. Lux S. F., Lucas I. T., Pollak E., Passerini S., Winter M., Kostecki R. The mechanism of HF formation in LiPF6 based organic carbonate electrolytes. Electrochemistry Communications, 2011, vol. 14, pp. 47–50. https://doi.org/10.1016/j.elecom.2011.10.026
Received: 
07.08.2025
Accepted: 
10.09.2025
Published: 
30.09.2025