discharge capacity

Structural and Electrochemical Characteristics of Porous Lead Electrodes with Additive Nanostructured Carbon

The effect of carbon materials of two types was studied: multi-walled carbon nanotubes (“Art-nano” of the NSU “S” brand (TU BU 690654933.001.-2011)) and multilayer graphene (“Art-nano GT” (TU BU 691460594.004–2017), and modifications by treatment with ozone and dimethylformamide (manufacturer LLC Advanced Research and Technology, Belarus) on the structural characteristics, capacity and utilization of the active mass of the negative electrode of a lead-acid battery.

The effect of discharge current upon battery capacity

Cycling tests of lithium-ion batteries in wide temperature and load ranges have been carried out. The existence of certain threshold discharge load corresponding abrupt decrease of discharge capacity was found.

The effect of discharge current upon capacity of lithium nano-titanate

Discharge behavior of lithium nano-titanate samples synthesized by solid-state methods from titania (anatase) and various lithium compounds has been studied. The shape of discharge curves was shown to change along with increasing current. This change was explained with due account for the model of heterogeneous lithium nano-titanate grain. It is found that the dependence of discharge capacity on current density does not obey to common Peukert equation but consists of two segments. In any cases the exponent in the Peukert equation does not exceed 0.2.