ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Leonova N. M., Leonova A. M., Bashirov O. A., Lebedev A. S., Trofimov A. A., Suzdal'tsev A. V. C/SiC-based anodes for lithium-ion current source. Electrochemical Energetics, 2023, vol. 23, iss. 1, pp. 41-50. DOI: 1608-4039-2023-23-1-41-50, EDN: ZFLYPF

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 191)
Language: 
Russian
Article type: 
Article
UDC: 
544.643
EDN: 
ZFLYPF

C/SiC-based anodes for lithium-ion current source

Autors: 
Leonova Nataliya Maksimovna, Ural Federal University
Leonova Anastasiya Maksimovna, Ural Federal University
Bashirov Oleg Andreevich, Ural Federal University
Lebedev Aleksei Sergeevich, Institute of Mineralogy – a division of the the South Urals Federal Research Center of Mineralogy and Geo-ecology of the Urals Branch of the Russian Academy of Sciences
Trofimov Aleksei Alekseevich, Ural Federal University
Suzdal'tsev Andrei Viktorovich, Ural Federal University
Abstract: 

Compositions of ultrafine Si and C particles are promising anode materials for lithium-ion power sources with improved energy characteristics. In the work, samples of lithium-ion power sources with an anode made of ultrafine SiC fibers, as well as mixtures of SiC fibers with graphite (C/SiC) and electrolytically deposited submicron silicon fibers (C/Si/SiC) were fabricated and studied for energy characteristics. The working ability of the mixtures obtained during lithiation/delithiation was shown, and the main energy characteristics of the investigated anode half-cells were determined. After 100 cycles, the SiC anode reached a discharge capacity of 180 and 138 mA⋅h/g at a charge current of C/20 and C, respectively. Anodes made of mixtures (wt%) 29.5C-70.5SiC and 50Si-14.5C-35.5SiC show discharge capacities of 328 and 400 mA⋅h/g at a charge current of C/2. The Coulomb efficiency of all samples was above 99%.

Acknowledgments: 
The work was carried out within the framework of the state task of the Ministry of Education and Science of the Russian Federation (Agreement No. 075-03-2022-011 dated January 14, 2022, FEUZ-2020-0037).
Reference: 
  1. Li S. A., Ryzhikova E. V., Skundin A. M. The active materials ratio in electrodes of lithiumion batteries: Optimisation problems. Electrochemical Energetics, 2020, vol. 20, no. 2, pp. 68–72 (in Russian). https://doi.org/10.18500/1608-4039-2020-20-2-68-72
  2. Zhuravlev V. D., Shchekoldin S. I., Andrjushin S. E., Sherstobitova E. A., Nefedova K. V., Bushkova O. V. Electrochemical characteristics and phase composition of lithium manganese oxide spinel with excess lithium Li1 + xMn2O4. Electrochemical Energetics, 2020, vol. 20, no. 3, pp. 157–170 (in Russian). https://doi.org/10.18500/1608-4039-2020-20-3-157-170
  3. Kornev P. V., Kulova T. L., Kuz’mina A. A., Skundin A. M., Koshel E. S., Klimova V. M. Neodymium-doped lithium titanate as anode material for lithium-ion batteries. Electrochemical Energetics, 2022, vol. 22, no. 3, pp. 129–138 (in Russian). https://doi.org/10.18500/1608-4039-2022-22-3-129-138
  4. Bini M., Ambrosetti M., Spada D. ZnFe2O4, a green and high-capacity anode material for lithium-ion batteries: A review. Applied Science, 2021, vol. 11, article no. 11713. https://doi.org/10.3390/app112411713
  5. Chemezov O. V., Isakov A. V., Apisarov A. P., Brezhestovsky M. S., Bushkova O. V., Batalov N. N., Zaikov Yu. P., Shashkin A. P. Electrolytic production of silicon nanofibers from the KCl–KF–K2SiF6–SiO2 melt for composite anodes of lithium-ion batteries. Electrochemical Energetics, 2013, vol. 13, no. 4, pp. 201–204 (in Russian).
  6. Korchun A. V., Evshchik E. Yu., Baskakov S. A., Bushkova O. V., Dobrovolsky Y. A. Influence of a binder on the electrochemical behaviour of Si/RGO composite as negative electrode material for Li-ion batteries. Chimica Techno Acta, 2020, vol. 7, no. 4, pp. 259–268. https://doi.org/10.15826/chimtech.2020.7.4.21
  7. Suzdaltsev A. Silicon electrodeposition for microelectronics and distributed energy: A mini-review. Electrochem., 2022, vol. 3, pp. 760–768. https://doi.org/10.3390/electrochem3040050
  8. Kulova T. L., Skundin A. M. Germanium in lithium-ion and sodium-ion batteries (A review). Russian Journal of Electrochemistry, 2022, vol. 57, pp. 1105–1137. https://doi.org/10.1134/S1023193521110057
  9. Chockla A. M., Klavetter K. C., Mullins C. B., Korgel B. A. Solution-grown germanium nanowire anodes for lithium-ion batteries. ACS Applied Materials & Interfaces, 2012, vol. 4, pp. 4658–4664. https://doi.org/10.1021/am3010253
  10. Fan Z., Wang Y., Zheng S., Xu K., Wu J., Chen S., Liang J., Shi A., Wang Zh. A submicron Si@C core-shell intertwined with carbon nanowires and graphene nanosheet as a high-performance anode material for lithium ion battery. Energy Storage Materials, 2021, vol. 39, pp. 1–10. https://doi.org/10.1016/j.ensm.2021.04.005
  11. Opra D. P., Gnedenkov S. V., Sinebryukhov S. L., Sokolov A. A., Podgorbunsky A. B., Kuryavyi V. G., Mayorov V. Yu., Mashtalyar D. V., Ustinov A. Yu. Vanadium-doped bronze titanium dioxide as anode material for lithium-ion batteries with enchanced cycleability and rate performance. Electrochemical Energetics, 2020, vol. 20, no. 1, pp. 3–19 (in Russian). https://doi.org/10.18500/1608-4039-2020-20-1-3-19
  12. Yakovleva E. V., Yakovlev A. V., Krasnov V. V., Tseluikin V. N., Mostovoy A. S., Kuramina N. Y., Brudnik S. V. Electrochemical nanostructuring of graphite for application in chemical current sources. Electrochemical Energetics, 2020, vol. 20, no. 1, pp. 45–54 (in Russian). https://doi.org/10.18500/1608-4039-2020-20-1-45-54
  13. Huang X. D., Zhang F., Gan X. F., Huang Q. A., Yang J. Z., Lai T., Tang W. M. Electrochemical characteristics of amorphous silicon carbide film as a lithium-ion battery anode. RSC Advance, 2018, vol. 8, pp. 5189–5169. https://doi.org/10.1039/C7RA12463E
  14. Sun X., Shao Ch., Zhang F., Li Y., Wu Q.-H., Yang Y. SiC nanofibers as long-life lithium-ion battery anode materials. Frontiers in Chemistry, 2018, vol. 6, article no. 166. https://doi.org/10.3389/fchem.2018.00166
  15. Lebedev A. S., Suzdaltsev A. V., Anfilogov V. N., Farlenkov A. S., Porotnikova N. M., Vovkotrub E. G., Akashev L. A. Carbothermal synthesis, properties, and structure of ultrafine SiC fibers. Inorganic Materials, 2020, vol. 56, pp. 20–27. https://doi.org/10.1134/S0020168520010094
  16. Anfilogov V. N., Lebedev A. S., Ryzhkov V. M., Blinov I. A. Carbothermal synthesis of nanoparticulate silicon carbide in a self-contained protective atmosphere. Inorganic Materials, 2016, vol. 52, pp. 655–660. https://doi.org/10.1134/S0020168516070025
  17. Gevel T. A., Zhuk S. I., Ustinova Yu. A., Suzdaltsev A. V., Zaikov Yu. P. Silicon electroreduction from the KCl–K2SiF6 melt. Rasplavy, 2021, no. 2, pp. 187–198 (in Russian). https://doi.org/10.31857/S0235010621020031
  18. Trofimov A. A., Leonova A. M., Leonova N. M., Gevel T. A. Electrodeposition of silicon from molten KCl–K2SiF6 for lithium-ion batteries. Journal of the Electrochemical Society, 2022, vol. 169, article no. 020537. https://doi.org/10.1149/1945-7111/ac4d6b
  19. Choi J.-H., Choi S., Cho J. S., Kim H.-K., Jeong S. M. Efficient synthesis of high areal capacity Si@graphite@SiC composite anode material via one-step electro-deoxidation. Journal of Alloys and Compounds, 2022, vol. 896, article no. 163010. https://doi.org/10.1016/j.jallcom.2021.163010
  20. Abdurakhimova R. K., Laptev M. V., Leonova N. M., Leonova A. M., Schmygalev A. S., Suzdaltsev A. V. Electroreduction of silicon from the NaI–KI–K2SiF6 melt for lithium-ion power sources. Chimica Techno Acta, 2022, vol. 9, no. 4, article no. 20229424. https://doi.org/10.15826/chimtech.2022.9.4.24
  21. Gevel T., Zhuk S., Leonova N., Leonova A., Trofimov A., Suzdaltsev A., Zaikov Y. Electrochemical synthesis of nano-sized silicon from KCl–K2SiF6 melts for powerful lithium-ion batteries. Applied Science, 2021, vol. 11, article no. 10927. https://doi.org/10.3390/app112210927
  22. Jiang Y., Offer G., Jiang J., Marinescu M., Wang H. Voltage hysteresis model for silicon electrodes for lithium ion batteries, including multi-step phase transformations, crystallization and amorphization. Journal of the Electrochemical Society, 2020, vol. 167, article no. 130533. https://doi.org/10.1149/1945-7111/abbbba
  23. Galashev A. Y., Vorob’ev A. S. First principle modeling of a silicene anode for lithium ion batteries. Electrochimical Acta, 2021, vol. 378, article no. 138143. https://doi.org/10.1016/j.electacta.2021.138143
Received: 
20.01.2023
Accepted: 
15.03.2023
Published: 
31.03.2023