ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)

For citation:

Leonova N. M., Leonova A. M., Bashirov O. A., Suzdal'tsev A. V. NiO/C-based anodes for lithium-ion current sources. Electrochemical Energetics, 2023, vol. 23, iss. 4, pp. 188-196. DOI: 10.18500/1608-4039-2023-23-4-188-196, EDN: SMCTZS

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 58)
Article type: 

NiO/C-based anodes for lithium-ion current sources

Leonova Nataliya Maksimovna, Ural Federal University
Leonova Anastasiya Maksimovna, Ural Federal University
Bashirov Oleg Andreevich, Ural Federal University
Suzdal'tsev Andrei Viktorovich, Ural Federal University

Nowadays, the active search for an anode material, which can be used in lithium-ion current sources, takes place. The potential anode materials are transition metal oxides (SnO2, NiO and others). In this work, submicron NiO powder was obtained using the thermal decomposition of Ni(CH3COO)2⋅4H2O. Besides, a NiO/C composite anode was fabricated and its behavior in the anode half-cell of lithium-ion current source was studied during multiple cycling. The workability of the anode material was shown and its main energy characteristics were determined. The discharge capacity of the NiO/C anode was 355 mA⋅h/g at the current of C/10 and Coulomb efficiency was 99–100% after 40 cycles.

  1. Kulova T. L., Skundin A. M. Problems of development of lithium-ion batteries all over the world and in Russia. Electrochemical Energetics, 2023, vol. 23, no. 3, pp. 111–120 (in Russian).
  2. Zhou G., Ding W., Wang T., Liu Ch., Zhang L., Yin J., Fu Yo. Progress of NiO-based anodes for high-performance Li-ion batteries. The Chem. Record, 2022, vol. 22, article no. e202200111.
  3. Chemezov O. V., Isakov A. V., Apisarov A. P., Brezhestovskii M. S., Bushkova O. V., Batalov N. N., Zaikov Yu. P., Shashkin A. P. Electrolytic production of silicon nanofibers from a KCl–KF–K2SiF6–SiO2 melt for composite anodes of lithium-ion batteries. Electrochemical Energetics, 2013, vol. 13, no. 4, pp. 201–204 (in Russian).
  4. Leonova N. M., Leonova A. M., Bashirov O. A., Lebedev A. S., Trofimov A. A., Suzdal’tsev A. V. Anodes based on C/SiC for lithium-ion current sources. Electrochemical Energetics, 2023, vol. 23, no. 1, pp. 41–50 (in Russian).
  5. Ivanishchev A. V. Approaches to the creation of electrodes based on lithium intercalation compounds. Electrochemical Energetics, 2018, vol. 18, no. 2, pp. 51–76 (in Russian).
  6. Kulova T. L., Skundin A. M. Germanium in lithium-ion and sodium-ion batteries (A review). Russ. J. Electrochem., 2021, vol. 57, no. 12, pp. 709–742 (in Russian).
  7. Chockla A. M., Klavetter K. C., Mullins C. B., Korgel B. A. Solution-grown germanium nanowire anodes for lithium-ion batteries. ACS Applied Materials & Interfaces, 2012, vol. 4, pp. 4658–4664.
  8. Ates M. N. Understanding the effect of deposition potential on the electrodeposited tin anodes for lithium-ion batteries. Journal of the Institute of Science and Technology, 2023, vol. 13, pp. 1804–1813.
  9. Bani-Fwaz M. Z., El-Zahhar A. A., Abd-Rabboh H. S. M., Hamdy M. S., Shkir M. Synthesis of NiO nanoparticles by thermal routes for adsorptive removal of crystal violet dye from aqueous solutions. Int. J. Env. Anal. Chem., 2019, vol. 101, pp. 1126–1144.
  10. Jesus J. C. De, Gonzales, Quevedo A., Puerta T. Thermal decomposition of nickel acetate tetrahydrate: an integrated study by TGA, QMS and XPS techniques. J. Mol. Cat. A : Chem., 2005, vol. 228, pp. 283–291.
  11. Trofimov A. A., Leonova A. M., Leonova N. M., Gevel T. A. Electrodeposition of silicon from molten KCl–K2SiF6 for lithium-ion batteries. J. Electrochem. Soc., 2022, vol. 169, article no. 020537.
  12. Liu X., Or S. W., Jin Ch., Lv Ya., Feng Ch., Sun Yu. NiO/C nanocapsules with onion-like carbon shell as anode material for lithium ion batteries. Carbon, 2013, vol. 60, pp. 215–220.
  13. Siddiqui S.-E-T., Rahman Md. A., Kim J.-H., Sharif S. B., Paul S. A Review on recent advancements of Ni-NiO nanocomposite as an anode for high-performance lithium-ion battery. Nanomaterials, 2022, vol. 12, article no. 2930.
  14. Jo M. S., Ghosh S., Jeong S. M., Kang Yu. Ch., Cho J. S. Coral-like yolk-shell structured nickel oxide/carbon composite microspheres for high-performance Li-ion storage anodes. Nano-Micro Lett., 2019, vol. 11, article no. 3. 18 p.
  15. Jiang Sh., Mao M.-M., Pang M.-J., Yang H., Wang R.-W., Li N., Pan Q.-L., Pang M., Zhao J.- G. Preparation and performance of a graphene-(Ni-NiO)-C hybrid as the anode of a lithium-ion battery. New Carb. Mater., 2023, vol. 38, pp. 356–365.
  16. Du D., Lan R., Xie K., Wang H., Tao Sh. Synthesis of Li2Ni2(MoO4)3 as a high-performance positive electrode for asymmetric supercapacitors. RSC Adv., 2017, vol. 7, pp. 13304–13311.
  17. Dai H., Zhang R., Zhong M., Guo Sh. Effects of the inherent tubular structure and graphene coating on the lithium ion storage performances of electrospun NiO/Co nanotubes. J. Phys. Chem., 2020, vol. 124, pp. 143–151.
  18. Leonova A. M., Bashirov O. A., Leonova N. M., Lebedev A. S., Trofimov A. A., Suzdaltsev A. V. Synthesis of C/SiC mixtures for composite anodes of lithium-ion power sources. Appled Science, 2022, vol. 13, iss. 2, article no. 901.
  19. Mohammadi A., Arsalani N., Tabrizi A. G., Moosavifard S. E., Naqshbandi Zh., Ghadimi L. S. Engineering rGO-CNT wrapped Co3S4 nanocomposites for high-performance asymmetric supercapacitors. Chem. Eng. Journal, 2018, vol. 334, pp. 66–80.
  20. Augustyn V., Simon P., Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Env. Sci., 2013, vol. 7, pp. 1597–1614.