ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Danilova V. O., Burashnikova M. M., Khramkova T. S., Gritsenko S. D., Samsonova K. A., Zhdanok S. A., Kazarinov I. A. Structural and Electrochemical Characteristics of Porous Lead Electrodes with Additive Nanostructured Carbon. Electrochemical Energetics, 2019, vol. 19, iss. 2, pp. 105-?. DOI: 10.18500/1608-4039-2019-19-2-105-115, EDN: UVIACX

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 151)
Language: 
Russian
Heading: 
Article type: 
Article
EDN: 
UVIACX

Structural and Electrochemical Characteristics of Porous Lead Electrodes with Additive Nanostructured Carbon

Autors: 
Danilova Veronika Olegovna, Saratov State University
Burashnikova Marina Mikhailovna, Saratov State University
Khramkova Tat'yana Sergeevna, Saratov State University
Gritsenko Stanislav Dmitrievich, Saratov State University
Samsonova Kseniya Aleksandrovna, Saratov State University
Zhdanok Siarhei Aleksandrovich, “Advanced Research & Technologies” LLC
Kazarinov Ivan Alekseevich, Saratov State University
Abstract: 

The effect of carbon materials of two types was studied: multi-walled carbon nanotubes (“Art-nano” of the NSU “S” brand (TU BU 690654933.001.-2011)) and multilayer graphene (“Art-nano GT” (TU BU 691460594.004–2017), and modifications by treatment with ozone and dimethylformamide (manufacturer LLC Advanced Research and Technology, Belarus) on the structural characteristics, capacity and utilization of the active mass of the negative electrode of a lead-acid battery. It was found that the highest utilization of the active mass are observed using carbon materials “Art nano” NSU “C” and “Art nano-GT”, treated with dimethylformamide. The introduction of carbon additives has an effect on the porous structure of the electrodes: the proportion of small pores, the total porosity and the specific surface of the electrodes increase.

Reference: 

1. Moseley P. T., Nelson R. F., Hollenkamp A. F. The role of carbon in valve-regulated lead–acid battery technology Review Article. J. Power Sources, 2006, vol. 157, iss. 1, pp. 3–10. DOI: https://doi.org/10.1016/j.jpowsour.2006.02.031

2. Nakamura K., Shiomi M., Takahashi K., Tsubota M. Failure modes of valve-regulated lead/acid batteries. J. Power Sources, 1996, vol. 59, iss. 1–2, pp. 153–157 DOI: https://doi.org/10.1016/0378-7753(95)02317-8

3. Hollekamp A. F., Baldsing W. G. A., Lau S., Lim O. V., Hewnham R. H., Rand D. A. J. et al. ALABC project NI.2, final report 2002. Advanced Lead-Acid Battery Consortium, Research Triangle Park, NC, USA, 2002.

4. Shiomi M., Funato T., Nakamura K., Takahashi K., Tsubota M. Effects of carbon in negative plates on cycle-life performance of valve-regulated lead-acid batteries. J. Power Sources, 1997, vol. 64, iss. 12, pp. 147–152. DOI: https://doi.org/10.1016/S0378-7753(96)02515-3

5. Moseley P. T. Consequences of including carbon in the negative plates of Valve-regulated Lead–Acid batteries exposed to high-rate partial-state-of-charge operation. J. Power Sources, 2009, vol. 191, iss. 1, pp. 134–138. DOI: https://doi.org/10.1016/j.jpowsour.2008.08.084

6. Lam L. T., Phyland C. G., Rand D. A. J., Vella D. G., Vu L. H. ALABC project N3.1, final report 2002. Advanced Lead-Acid Battery Consortium, Research Triangle Park, NC, USA, 2002.

7. Fernandez M., Valenciano J., Trinidad F., Mu noz N. The use of activated carbon and graphite for the development of lead-acid batteries for hybrid vehicle applications. J. Power Sources, 2010, vol. 195, iss. 14, pp. 4458–4469. DOI: https://doi.org/10.1016/j.jpowsour.2009.12.131

8. Boden D. P., Loosemore D. V., Spence M. A., Wojcinski T. D. Optimization studies of carbon additives to negative active material for the purpose of extending the life of VRLA batteries in high-rate partial-state-of-charge operation. J. Power Sources, 2010, vol. 195, iss. 14, pp. 4470–4493. DOI: https://doi.org/10.1016/j.jpowsour.2009.12.069

9. Moseley P. T., Rand D. A. J., Davidson A., Monahov B. Understanding the functions of carbon in the negative active-mass of the lead–acid battery: A review of progress. J. Energy Storage, 2018, vol. 19, pp. 272–290. DOI: https://doi.org/10.1016/j.est.2018.08.003

10. Pavlov D., Nikolov P. Capacitive carbon and electrochemical lead electrode systems at the negative plates of lead acid batteries and elementary processes on cycling. J. Power Sources, 2013, vol. 242, pp. 380–399. DOI: http://dx.doi.org/10.1016/j.jpowsour.2013.05.065

11. Danilova V. O., Burashnikova M. M., Gricenko S. D., Samsonov M. A., Kazarinov I. A. Effect of carbon with different structure to the active mass of the negative electrode lead-acid batteries at its discharge characteristics. Electrochemical Energetics, 2016, vol. 16, no.1, pp. 10–16 (in Russian). DOI: http://dx.doi.org/10.18500/1608-4039-2016-1-10-16

12. Volfkovich Yu. M., Bagockij V. S., Sosenkin V. E., Shkolnikov E. I. Methods of standard porometry and possible areas of their application in electrochemistry. Elektrokhimiya, 1980, vol. 16, pp. 1620–1653 (in Russian).

Received: 
15.04.2019
Accepted: 
30.05.2019
Published: 
24.06.2019