ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


Для цитирования:

Ушаков А. В., Рыбаков К. С., Хрыкина А. В., Гамаюнова И. М. Вероятностные модели ёмкости электродного материала в широком диапазоне токовых нагрузок // Электрохимическая энергетика. 2024. Т. 24, вып. 2. С. 59-75. DOI: 10.18500/1608-4039-2024-24-2-59-75, EDN: UYAMCU

Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0).
Полный текст в формате PDF(Ru):
(загрузок: 23)
Язык публикации: 
русский
Тип статьи: 
Научная статья
УДК: 
544.643+544.651
EDN: 
UYAMCU

Вероятностные модели ёмкости электродного материала в широком диапазоне токовых нагрузок

Авторы: 
Ушаков Арсений Владимирович, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Рыбаков Кирилл Сергеевич, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Хрыкина Анна Валериевна, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Гамаюнова Ирина Михайловна, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Аннотация: 

Предлагается подход к построению математических моделей токовой зависимости ёмкости электродных материалов. Подход предполагает анализ вероятностей свершения благоприятных и неблагоприятных событий на элементах электрических эквивалентных схем, которыми можно моделировать электрод. Предложено несколько вероятностных моделей, соответствующих разным комбинациям конденсатора, элемента Варбурга, элемента постоянной фазы в электрической схеме. В качестве примеров иллюстрируется обоснование конкретных моделей для описания экспериментальных токовых зависимостей ёмкости композитных электродов на основе Li3V2(PO4)3 или Li4Ti5O12 с углеродным наноматериалом. Подход позволяет аппроксимировать такие зависимости для широкого диапазона токовых нагрузок – от 0.1 до 50 C.

Благодарности: 
Работа выполнена при поддержке Российского научного фонда (проект № 21-73-10091).
Список источников: 
  1. Potential Benefits of High-Power, HighCapacity Batteries (January 2020). United States Department of Energy. Washington, DC 20585. Available at: https://www.energy.gov/oe/downloads/potentialbenefits-high-power-high-capacity-batteries-january2020 (accessed Febrary 01, 2024).
  2. Bagotsky V. S. Fundamentals of Electrochemistry. 2nd ed. John Wiley & Sons, Inc., 2006. 722 p.
  3. Biesheuvel P. M., Dykstra J. E. Introduction to Physics of Electrochemical Processes. 2020. Available at: http://www.physicsofelectrochemicalprocesses.com (accessed Febrary 01, 2024).
  4. Biesheuvel P. M., Porada S., Dykstra J. E. The difference between Faradaic and non-Faradaic electrode processes. arXiv:1809.02930v4 [physics.chem-ph]. Available at: https://arxiv.org/pdf/1809.02930v4.pdf (accessed Febrary 01, 2024).
  5. Atkins P., De Paula J., Keeler J. Atkins’ physical chemistry. 11th ed. Oxford University Press, 2017, 928 p.
  6. Korovin N. V., Skundin A. M., eds. Khimicheskiye istochniki toka: spravochnik [Electrochemical Power Sources: handbook]. Moscow, MEI Publ., 2003. 740 p. (in Russian).
  7. Alviev Kh. Kh. The effect of discharge current upon battery capacity. Electrochemical Energetics, 2013, vol. 13, no. 4, pp. 225-227 (in Russian).
  8. Yazvinskaya N. N., Galushkin D. N., Galushkin N. E. Generalization of Peukert’s equation to build practical models of batteries. Izvestiya vuzov. Severo-kavkazskiy region. Technical Science, 2019, no. 2, pp. 60-68 (in Russian). https://doi.org/10.17213/0321-2653-2019-2-60-68
  9. Doyle M., Newman J. Analysis of capacity- rate data for lithium batteries using simplified models of the discharge process. Journal of Applied Electrochemistry, 1997, vol. 27, pp. 846-856. https://doi.org/10.1023/A:1018481030499
  10. Lain M. J., Kendrick E. Understanding the limitations of lithium ion batteries at high rates. Journal of Power Sources, 2021, vol. 493, article no. 229690. https://doi.org/10.1016/j.jpowsour.2021.229690
  11. Heubner C., Schneider M., Michaelis A. Diffusion-Limited C-Rate: A Fundamental Principle Quantifying the Intrinsic Limits of Li-Ion Batteries. Adv. Energy Mater., 2020, vol. 10, article no. 1902523. https://doi.org/10.1002/aenm.201902523
  12. Heubner C., Reuber S., Seeba J., Marcinkowski P., Nikolowski K., Schneider M., Wolter M., Michaelis A. Application-oriented modeling and optimization of tailored Li-ion batteries using the concept of Diffusion Limited C-rate. Journal of Power Sources, 2020, vol. 479, article no. 228704. https://doi.org/10.1016/j.jpowsour.2020.228704
  13. Heubner C., Nikolowski K., Reuber S., Schneider M., Wolter M., Michaelis A. Recent Insights into Rate Performance Limitations of Li-ion Batteries. Batteries & Supercaps, 2020, vol. 4, iss. 2, pp. 268-285. https://doi.org/10.1002/batt.202000227
  14. Parikh D., Christensen T., Li J. Correlating the influence of porosity, tortuosity, and mass loading on the energy density of LiNi0.6Mn0.2Co0.2O2 cathodes under extreme fast charging (XFC) conditions. Journal of Power Sources, 2020, vol. 474, article no. 228601. https://doi.org/10.1016/j.jpowsour.2020.228601
  15. Parikh D. Understanding the Limitations in Battery Components for Improving Energy Density under Extreme Fast Charging (XFC) Conditions, PhD diss., University of Tennessee, 2021. https://trace.tennessee.edu/utk_graddiss/6504 (accessed December 16, 2021).
  16. Wang F., Tang M. A Quantitative Analytical Model for Predicting and Optimizing the Rate Performance of Battery Cells. Cell Reports Physical Science, 2021, vol. 1, no. 9, article no. 100192. https://doi.org/10.1016/j.xcrp.2020.100192
  17. Mayilvahanan K. S., Hui Z., Hu K., Kuang J., McCarthy A. H., Bernard J., Wang L., Takeuchi K. J., Marschilok A. C., Takeuchi E. S., West A. C. Quantifying Uncertainty in Tortuosity Estimates for Porous Electrodes. Journal of The Electrochemical Society, 2021, vol. 168, no. 7, article no. 070537. https://dx.doi.org/10.1149/1945-7111/ac1316
  18. Weiss M., Ruess R., Kasnatscheew J., Levartovsky Y., Levy N. R., Minnmann P., Stolz L., Waldmann T., Wohlfahrt-Mehrens M., Aurbach D., Winter M., Ein-Eli Y., Janek J. Fast Charging of Lithium-Ion Batteries: A Review of Materials Aspects. Adv. Energy Mater., 2021, vol. 11, article no. 2101126. https://doi.org/10.1002/aenm.202101126
  19. Ivanishchev A. V., Ushakov A. V., Ivanishcheva I. A., Churikov A. V., Mironov A. V., Fedotov S. S., Khasanova N. R., Antipov E. V. Structural and electrochemical study of fast Li diffusion in Li3V2(PO4)3-based electrode material. Electrochimica Acta, 2017, vol. 230, pp. 479-491. https://doi.org/10.1016/j.electacta.2017.02.009
  20. Ushakov A. V., Makhov S. V., Gridina N. A., Ivanishchev A. V., Gamayunova I. M. Rechargeable lithium-ion system based on lithium-vanadium(III) phosphate and lithium titanate and the peculiarity of it functioning. Monatshefte für Chemie - Chemical Monthly, 2019, vol. 150, pp. 499-509. https://doi.org/10.1007/s00706-019-2374-4
  21. Kornyshev A. A. Double-Layer in Ionic Liquids: Paradigm Change? J. Phys. Chem. B, 2007, vol. 111, pp. 5545-5557. https://doi.org/10.1021/jp067857o
  22. O’Hanlon S., McNultyD., Tian R., Coleman J., O’Dwyer C. High Charge and Discharge Rate Limitations in Ordered Macroporous Li-ion Battery Materials. Journal of The Electrochemical Society, 2020, vol. 167, article no. 140532. https://doi.org/10.1149/1945-7111/abc6cb
  23. Tian R., Park S.-H., King P. J., Cunningham G., Coelho J., Nicolosi V., Coleman J. N. Quantifying the factors limiting rate performance in battery electrodes. Nature Communications, 2019, vol. 10, article no. 1933.
  24. Triola M. F., ed. Elementary statistics technology update. 12th ed. Pearson, 2016. 840 p.
  25. Lvovich V. F. Distributed Impedance Models. In: Impedance Spectroscopy: Applications to Electrochemical and Dielectric Phenomena. John Wiley & Sons, Inc., 2012. 368 p. https://doi.org/10.1002/9781118164075
  26. Bobyl A., Nam S.-C., Song J.-H., Ivanishchev A., Ushakov A. Rate Capability of LiFePO4 Cathodes and the Shape Engineering of Their Anisotropic Crystallites. J. Electrochem. Sci. Technol., 2022, vol. 13, pp. 438-452. https://doi.org/10.33961/jecst.2022.00248
  27. Agafonov D., Bobyl A., Kamzin A., Nashchekin A., Ershenko E., Ushakov A., Kasatkin I., Levitskii V., Trenikhin M., Terukov E. Phase-Homogeneous LiFePO4 Powders with Crystallites Protected by Ferric-Graphite-Graphene Composite. Energies, 2023, vol. 16, no. 3, article no. 1551. https://doi.org/10.3390/en16031551

 

Поступила в редакцию: 
01.04.2024
Принята к публикации: 
08.05.2024
Опубликована: 
28.06.2024