ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


Для цитирования:

Истомина А. С., Бушкова О. В. Полимерные связующие для электродов литиевых аккумуляторов. Часть 3. Проводящие полимеры // Электрохимическая энергетика. 2021. Т. 21, вып. 1. С. 3-20. DOI: 10.18500/1608-4039-2021-21-1-3-20, EDN: SEUHGY

Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0).
Полный текст в формате PDF(Ru):
(загрузок: 112)
Язык публикации: 
русский
Тип статьи: 
Научная статья
EDN: 
SEUHGY

Полимерные связующие для электродов литиевых аккумуляторов. Часть 3. Проводящие полимеры

Авторы: 
Истомина Айгуль Салаватовна, Институт химии твердого тела Уральского отделения Российской академии наук
Бушкова Ольга Викторовна, Институт химии твердого тела Уральского отделения Российской академии наук
Аннотация: 

В третьей части обзора обсуждается использование полимерных связующих с электронной проводимостью для изготовления композиционных электродов литиевых электрохимических систем. Рассмотрены полимерные полупроводники («синтетические металлы»), их производные с дополнительно введёнными функциональными группами, сополимеры и смеси полимеров на их основе, а также карбоцепные полимеры и сополимеры с полиароматическими фрагментами. Использование таких материалов значительно улучшает электрическую связность композиционной электродной массы и даёт возможность совсем исключить или свести к минимуму содержание электрохимически инертных электропроводных добавок (сажи, графитовой пудры); это положительно сказывается на удельной ёмкости и стабильности циклирования электродов. Улучшение условий электронного переноса особенно важно для эффективного использования активных материалов с крайне низкой собственной проводимостью, таких, как Si, Li4Ti5O12, LiFePO4 и т. п.

В заключительной части обзора суммированы общие принципы целенаправленного выбора полимерного связующего.

Список источников: 

1. Chen H., Ling M., Hencz L., Ling H. Y., Li G., Lin Z., Liu G., Zhang S. Exploring chemical, mechanical, and electrical functionalities of binders for advanced energy-storage devices // Chem. Rev. 2018. Vol. 118, № 18. P. 8936–8982. https://www.doi.org/10.1021/acs.chemrev.8b00241

2. Ma Y., Ma J., Cui G. Small things make big deal : Powerful binders of lithium batteries and post-lithium batteries // Energy Storage Mater. 2019. Vol. 20. P. 146–175. https://www.doi.org/10.1016/j.ensm.2018.11.013

3. Энциклопедия полимеров : в 3 т. / под ред. В. А. Каргина [и др.]. М. : Сов. энцикл., 1972. Т. 1. 1224 с.

4. Сажин Б. И., Лобанов А. М., Романовская О. С., Эйдельнант М. П., Койков С. Н., Шуваев В. П., Борисова М. Э. Электрические свойства полимеров / под ред. Б. И. Сажина ; 3-е изд., перераб. Л. : Химия, 1986. 224 с.

5. Diaz A. F., Rubinson J. F., Mark H. B. Electrochemistry electrode applications of electroactive / conductive polymers // Adv. Polym Sci. 1988. Vol. 84. P. 113–139. https://www.doi.org/10.1007/bfb0025905

6. Ates M., Karazehir T., Sarac A. S. Conducting polymers and their applications // Current Phys. Chem. 2012. Vol. 2. P. 224–240. https://www.doi.org/10.2174/1877946811202030224

7. Верницкая Т. В., Ефимов О. Н. Полипиррол как представитель класса проводящих полимеров (синтез, свойства, приложения) // Успехи химии. 1997. Т. 66, № 5. С. 489–505. https://www.doi.org/10.1070/rc1997v066n05abeh000261

8. Боева Ж. А., Сергеев В. Г. Полианилин : синтез, свойства и применение // Высокомолек. соед. С. 2014. T. 56, № 1. С. 153–164. https://www.doi.org/10.7868/S2308114714010038

9. Электрохимия полимеров / под ред. М. Р. Тарасевича, Е. И. Хрущевой. M. : Наука, 1990. 238 c.

10. Tamura T., Aoki Y., Ohsawa T., Dokko K. Polyaniline as a functional binder for LiFePO4 cathodes in lithium batteries // Chem. Lett. 2011. Vol. 40, № 8. P. 828–830. https://www.doi.org/10.1246/cl.2011.828

11. Kuwabata S., Idzu T., Martin C. R., Yoneyama H. Charge–discharge properties of composite films of polyaniline and crystalline V2O5 particles // J. Electrochem. Soc. 1998. Vol. 145, № 8. P. 2707–2710. https://www.doi.org/10.1149/1.1838702

12. Gaberscek M., Jamnik J. Impact of electrochemical wiring topology on the kinetics of insertion electrodes // Solid State Ionics. 2006. Vol. 177. P. 2647–2651. https://www.doi.org/10.1016/j.ssi.2006.02.035

13. Dasa P. R., Grafensteina A., Ledwocha D., Ostersa O., Komsiyskaa L., Wittstock G. Conducting polymers as binder additives for cathodes in Li ion battery // ECS Trans. 2014. Vol. 63, № 1. P. 31–43. https://www.doi.org/10.1149/06301.0031ecst

14. Mattoso L. H. C., MacDiarmid A. G., Epstein A. J. Controlled synthesis of high molec-ular weight polyaniline and poly(o-methoxyaniline) // Synth. Met. 1994. Vol. 68, № 1. P. 1–11. https://www.doi.org/10.1016/0379-6779(94)90140-6

15. Akcelrud L., Goncalves D., Dos Dantos D. S. J., Mattoso L. H. C., Karasz F. E., Faria R. M. Poly (o-methoxy aniline) : Solubility, deprotonation-protonation process in solution and cast films // Synth. Met. 1997. Vol. 90, № 1. P. 5–11. https://www.doi.org/10.1016/S0379-6779(97)03895-2

16. Wang X., Zhang Y., Shi Y., Zeng X., Tang R., We L. Conducting polyaniline/poly (acrylic acid)/phytic acid multifunctional binders for Si anodes in lithium ion batteries // Ionics. 2019. Vol. 25. P. 5323–5331. https://www.doi.org/10.1007/s11581-019-03122-1

17. Rajeev K. K., Kim E., Nam J., Lee S., Mun J., Kim T.-H. Chitosan-grafted-polyaniline copolymer as an electrically conductive and mechanically stable binder for high-performance Si anodes in Li-ion batteries // Electrochim. Acta. 2020. Vol. 333. P. 1–20. https://www.doi.org/10.1016/j.electacta.2019.135532

18. Fedorkova A., Nacher-Alejos A., Gomez-Romero P., Orinakova R., Kaniansky D. Structural and electrochemical studies of PPy / PEG-LiFePO4 cathode material for Li-ion batteries // Electrochim. Acta. 2010. Vol. 55. P. 943–947. https://www.doi.org/10.1016/j.electacta.2009.09.060

19. Zhang P., Zhang L., Ren X., Yuan Q., Liu J., Zhang Q. Preparation and electrochemical properties of LiNi1/3Co1/3Mn1/3O2-PPy composites cathode materials for lithium-ion battery // Synth. Met. 2011. Vol. 161, № 11–1. P. 1092–1097. https://www.doi.org/10.1016/j.synthmet.2011.03.021

20. Fedorkova A., Oriтakova R., Orinak A., Wiemhofer H., Kaniansky D., Winter M. Surface treatment of LiFePO4 cathode material with PPy/PEG conductive layer // J. Solid State Electrochem. 2010. Vol. 14, № 12. P. 2173–2178. https://www.doi.org/10.1007/s10008-009-0967-2

21. Chew S. Y., Feng C., Ng S. H., Wang J., Guo Z., Liu H. Low-temperature synthesis of polypyrrole-coated LiV3O8 composite with enhanced electrochemical properties // J. Electrochem. Soc. 2007. Vol. 154, № 7. P. A633–A637. https://www.doi.org/10.1149/1.2734778

22. Cui L., Shen J., Cheng F., Tao Z., Chen J. SnO2 nanoparticles@polypyrrole nanowires composite as anode materials for rechargeable lithium-ion batteries // J. Power Sources. 2011. Vol. 196 № 4. P. 2195–2201. https://www.doi.org/10.1016/j.jpowsour.2010.09.075

23. Zhao Y., Lv Z., Wang Y., Xu T. Combination of Fe-Mn based Li-rich cathode materials and conducting-polymer polypyrrole nanowires with high rate capability // Ionics. 2018. Vol. 24, № 1. P. 51–60. https://www.doi.org/10.1007/s11581-017-2166-y

24. Han P., Chung S.-H., Manthiram A. Designing a high-loading sulfur cathode with a mixed ionic-electronic conducting polymer for electrochemically stable lithium-sulfur batteries // Energy Storage Mater. 2019. Vol. 17. P. 317–324. https://www.doi.org/10.1016/j.ensm.2018.11.002

25. Fu Y., Manthiram A. Enhanced cyclability of lithium-sulfur batteries by a polymer acid-doped polypyrrole mixed ionic-electronic conductor // Chem. Mater. 2012. Vol. 24, № 15. P. 3081–3087. https://www.doi.org/10.1021/cm301661y

26. Liu Y., Yan W., An X., Du X., Wang Z., Fan H., Liu S., Hao X., Guan G. A polypyrrole hollow nanosphere with ultra-thin wrinkled shell : Synergistic trapping of sulfur in lithium-sulfur batteries with excellent elasticity and buffer capability // Electrochim. Acta. 2018. Vol. 271. P. 67–76. https://www.doi.org/10.1016/j.electacta.2018.03.131

27. Mangold K.-M., Weidlich C., Schuster J., Juttner K. Ion exchange properties and selectivity of PSS in an electrochemically switchable PPy matrix // J. Appl. Electrochem. 2005. Vol. 35, № 12. P. 1293–1301. https://www.doi.org/10.1007/s10800-005-9061-3

28. Groenendaal L., Jonas F., Freitag D., Pielartzik H., Reynolds J. R. Poly(3,4-ethylenedioxythiophene) and its derivatives : Past, present, and future // Adv. Mater. 2000. Vol. 12, № 7. P. 481–494. https://www.doi.org/10.1002/(SICI)1521-4095(200004)12:7<481::AID-ADMA481>3.0.CO;2-C

29. Skotheim T. A., Reynolds J. R. Conjugated polymers : Processing and applications. CRC Press, 2006. 656 p.

30. Stocker T., Kohler A., Moos R. Why does the electrical conductivity in PEDOT : PSS decrease with PSS content? A study combining thermoelectric measurements with impedance spectroscopy // J. Polym. Sci. B : Polym. Phys. 2012. Vol. 50, № 14. P. 976–983. https://www.doi.org/10.1002/polb.23089

31. Елисева С. Н., Левин О. В., Толстопятова Е. Г., Алексеева Е. В., Кондратьев В. В. Влияние добавки проводящего полимера на свойства катодного материала на основе LiFePO4 для литий-ионых акумуляторов // Журн. прикл. химии. 2015. Т. 88, № 7. С 1055–1058. https://www.doi.org/10.1134/S1070427215070071

32. Levin O. V., Eliseeva S. N., Alekseeva E. V., Tolstopjatova E. G., Kondratiev V. V. Composite LiFePO4/poly-3,4-ethylenedioxythiophene cathode for lithium-ion batteries with low content of non-electroactive components // Int. J. Electrochem. Sci. 2015. Vol. 10. P. 8175–8189.

33. Eliseeva S. N., Levin O. V., Tolstopjatova E. G., Alekseeva E. V., Apraksin R. V., Kondratiev V. V. New functional conducting poly-3,4-ethylenedioxythiopene : polystyrene-sulfonate/carboxymethylcellulose binder for improvement of capacity of LiFePO4-based cathode materials // Mater. Lett. 2015. Vol. 161. P. 117–119. https://www.doi.org/10.1016/j.matlet.2015.08.078

34. Vorobeva K. A., Eliseeva S. N., Apraksin R. V., Kamenskii M. A., Tolstopjatova E. G., Kondratiev V. V. Improved electrochemical properties of cathode material LiMn2O4 with conducting polymer binder // J. Alloys Compd. 2018. Vol. 766. P. 33–44. https://www.doi.org/10.1016/j.jallcom.2018.06.324

35. Shkreba E. V., Eliseeva S. N., Apraksin R. V., Kamenskii M. A., Tolstopjatova E. G., Kondratiev V. V. Electrochemical performance of lithium titanate anode fabricated using a water-based binder // Mendeleev Commun. 2019. Vol. 29, № 1. P. 105–107. https://www.doi.org/10.1016/j.mencom.2019.01.036

36. Eliseeva S. N., Shkreba E. V., Kamenskiia M. A., Tolstopjatovaa E. G., Holzea R., Kondratieva V. V. Effects of conductive binder on the electrochemical performance of lithium titanate anodes // Solid State Ionics. 2019. Vol. 333. P. 18–29. https://www.doi.org/10.1016/j.ssi.2019.01.011

37. Шкреба Е. В., Елисеева С. Н., Апраксин Р. В., Кондратьев В. В. Исследование электрохимических свойств электродов на основе титаната лития с проводящим полимерным связующим // Электрохимическая энергетика. 2017. Т. 17, № 3. С. 123–134. https://www.doi.org/10.18500/1608-4039-2017-17-3-123-134

38. Das P. R., Komsiyska L., Osters O., Wittstock G. PEDOT : PSS as a functional binder for cathodes in lithium ion batteries // J. Electrochem. Soc. 2015. Vol. 162, № 4. P. A674–A678. https://www.doi.org/10.1149/2.0581504jes

39. Kim J.-M., Park H.-S., Park J.-H., Kim T.-H., Song H.-K., Lee S.-Y. Conducting polymer-skinned electroactive materials of lithium-ion batteries : Ready for monocomponent electrodes without additional binders and conductive agents // ACS Appl. Mater. Inter. 2014. Vol. 6, № 15. P. 12789–12797. https://www.doi.org/10.1021/am502736m

40. Su M., Liu S., Wan H., Dou A., Liu K., Liu Y. Effect of binders on performance of Si/C composite as anode for Li-ion batteries // Ionics. 2019. Vol. 25, № 5. P. 2103–2109. https://www.doi.org/10.1007/s11581-018-2611-6

41. Wang W., Yue X., Meng J., Wang X., Zhou Y., Wang Q., Fu Z. Comparative study of water-based LA133 and CMC/SBR binders for sulfur cathode in advanced lithiumsulfur batteries // J. Phys. Chem. C. 2019. Vol. 123, № 1. P. 250–257. https://www.doi.org/10.1021/acs.jpcc.8b10736

42. Li J. Y., Xu Q., Li G., Yin Y. X., Wan L. J., Guo Y. G. Research progress regarding Si-based anode materials towards practical application in high energy density Li-ion batteries // Mater. Chem. Front. 2017. Vol. 1, № 9. P. 1691–1708. https://www.doi.org/10.1039/c6qm00302h

43. Higgins T. M., Park S. H., King P. J., Zhang C. J., McEvoy N., Berner N. C., Daly D., Shmeliov A., Khan U., Duesberg G., Nicolosi V., Coleman J. N. A commercial conducting polymer as both binder and conductive additive for silicon nanoparticle-based lithium-ion battery negative electrodes // ACS Nano. 2016. Vol. 10, № 3. P. 3702–3713. https://www.doi.org/10.1021/acsnano.6b00218

44. Shao D., Zhong H., Zhang L. Water-soluble conductive composite binder containing PEDOT :PSS as conduction promoting agent for Si anode of lithium-ion batteries // ChemElectroChem. 2014. Vol. 1, № 10. P. 1679–1687. https://www.doi.org/10.1002/celС.201402210

45. Salem N., Lavrisa M., Abu-Lebdeh Y. Ionically-functionalized poly(thiophene) conductive polymers as binders for silicon and graphite anodes for li-ion batteries // Energy Technol. 2016. Vol. 4, № 2. P. 331–340. https://www.doi.org/10.1002/ente.201500250

46. Zhaoa H., Dub A., Linga M., Battagliaa V., Liu G. Conductive polymer binder for nano-silicon/graphite composite electrode in lithium-ion batteries towards a practical application // Electrochim. Acta. 2016. Vol. 209. P. 159–162. https://www.doi.org/10.1016/j.electacta.2016.05.061

47. Zheng T., Jia Z., Lin N., Langer T., Lux S., Lund I., Gentschev A.-C., Qiao J., Liu G. Molecular Spring Enabled High-Performance Anode for Lithium Ion Batteries // Polymers. 2017. Vol. 9. P. 657–667. https://www.doi.org/10.3390/polym9120657

48. Chou S.-L., Pan Y., Wang J. Z., Liu H. K., Dou S. X. Small things make a big difference : Binder effects on the performance of Li and Na batteries // Phys. Chem. Chem. Phys. 2014. Vol. 16, № 38. P. 20347–20359. https://www.doi.org/10.1039/C4CP02475C

49. Obrovac M. N., Chevrier V. L. Alloy negative electrodes for Li-ion batteries // Chem. Rev. 2014. Vol. 114, № 23. P. 11444–11502. https://www.doi.org/10.1021/cr500207g

50. Suna Y., Dong H., Xu Y., Zhang Y., Zhao C., Wang D., Liu Z., Liu D. Incorporating cyclized-polyacrylonitrile with Li4Ti5O12 nanosheet for high performance lithium ion battery anode material // Electrochim. Acta. 2017. Vol. 246. P. 106–114. https://www.doi.org/10.1016/j.electacta.2017.05.080

51. Зильберман Е. Н. Реакции нитрилсодержащих полимеров // Успехи химии. 1986. Т. 55, № 1. С. 62–78. https://www.doi.org/10.1070/RC1986v055n01ABEH003170

52. Андреева О. А., Буркова Л. А., Фирсов Е. И. Конформационные и структурные превращения полиакрилонитрила и полиакрилонитрила-?-D при термодеструкции в средах с пониженным содержанием кислорода // Высокомолек. cоед. A. 1987. Т. 29, № 9. С. 1950–1955.

53. Семенистая Т. В., Петров В. В. Металлсодержащий полиакрилонитрил : состав, структура, свойства. Таганрог : Издательство Южного федерального университета, 2015. 169 с.

54. Novak P., Muller K., Santhanam K. S. V., Haas O. Electrochemically active polymers for rechargeable batteries // Chem. Rev. 1997. Vol. 97, № 1. P. 207–282. https://www.doi.org/10.1021/cr941181o

55. Levi M. D., Gofer Y., Aurbach D. A. A synopsis of recent attempts toward construction of rechargeable batteries utilizing conducting polymer cathodes and anodes // Polym. Adv. Technol. 2002. Vol. 13, № 10–12. P. 697. https://www.doi.org/10.1002/pat.259

56. Muench S., Wild A., Friebe C., Haupler B., Janoschka T., Schubert U. S. Polymer-based organic batteries // Chem. Rev. 2016. Vol. 116, № 16. P. 9438–9484. https://www.doi.org/10.1021/acs.chemrev.6b00070

57. Goto F., Abe K., Ikabayashi K., Yoshida T., Morimoto H. The polyaniline/lithium battery // J. Power Sources. 1987. Vol. 20, № 3–4. P. 243. https://www.doi.org/10.1016/0378-7753(87)80118-0

58. Manuel J., Raghavan P., Shin C., Heo M.-Y., Ahn J.-H., Noh J.-P., Cho G.-B., Ryu H.-S., Ahn H.-J. Electrosprayed polyaniline as cathode material for lithium secondary batteries // Mat. Res. Bull. 2010. Vol. 45, № 3. P. 265–268. https://www.doi.org/10.1016/j.materresbull.2009.12.021

Поступила в редакцию: 
29.04.2021
Принята к публикации: 
19.03.2021
Опубликована: 
25.03.2021