Для цитирования:
Бережная А. Г., Чернявина В. В., Лепешкин И. О. Электрохимические свойства композитных электродов, содержащих наночастицы солей меди // Электрохимическая энергетика. 2020. Т. 20, вып. 3. С. 132-?. DOI: 10.18500/1608-4039-2020-20-3-132-145, EDN: WBMGTK
Электрохимические свойства композитных электродов, содержащих наночастицы солей меди
Исследованы энергетические свойства новых композитных электродных материалов, пригодных для электрохимических конденсаторов. Композитные электроды изготовлены на основе активированного угля Norit A и синтезированных малорастворимых солей меди: иодида меди (I) и гексацианоферратов (II) и (III) разного состава. Состав солей подтвержден методом элементного анализа, размер частиц определен по уравнению Шеррера из данных рентгенофазового анализа. Электрохимические характеристики электродов определены методами цикловольтамперометрии, заряд-разрядных гальваностатических кривых и импедансной спектроскопии. Установлено, что композитные материалы, содержащие 5–30 мас.% иодида меди и гексацианоферрата (II) меди, имеют меньшие по сравнению с чистым угольным электродом емкостные характеристики. Введение в электродный материал двойных гексацианоферратов (II) и (III) меди, калия приводит к повышению удельной емкости на 30 и 20 % по сравнению с угольным электродом соответственно.
1. Barsukov I. V., Johnson C., Doninger E., Barsukov V. Z. New Carbon Based Materials for Electrochemical Energy Storage Systems : Batteries, Supercapacitors and Fuel Cells (NATO Science Series II : Mathematics, Physics and Chemistry). New York : Springer, 2006. 297 p.
2. Frackowiak E., Beguin F. Carbon materials for the electrochemical storage of energy in capacitors // Carbon. 2001. Vol. 39. P. 937–950. DOI: https://doi.org/10.1016/S0008-6223(00)00183-4
3. Burke A., Miller M. The power capability of ultracapacitors and lithium batteries for electric and hybrid vehicle applications // J. Power Sources. 2011. Vol. 196. P. 514–522. DOI: https://doi.org/10.1016/j.jpowsour.2010.06.092
4. Yamada M., Arai M., Kurihara M., Sakamoto M., Miyake M. Synthesis and Isolation of Cobalt Hexacyanoferrate/Chromate Metal Coordination Nanopolymers Stabilized by Alkylamino Ligand with Metal Elemental Control // J. Am. Chem. Soc. 2004. Vol. 126, iss. 31. P. 9482–9483. DOI: https://doi.org10.1021/ja0476866
5. Cai C. X., Xue K. H., Xu S. M. Electrocatalytic activity of a cobalt hexacyanoferrate modified glassy carbon electrode toward ascorbic acid oxidation // J. Electroanal. Chem. 2000. Vol. 486, № 2. P. 111–118. DOI: https://doi.org/10.1016/S0022-0728(00)00114-5
6. Vaucher S., Fielden J., Li M., Dujardin E., Mann S. Molecule-based magnetic nanoparticles : synthesis of cobalt hexacyanoferrtaes, cobalt pentacyanoitrosylferrate, and chromium hexacyanochromate coordination polymers in water-in-oil microemulsion // Nano Letters. 2002. Vol. 2, iss. 3. P. 225–229. DOI: https://doi.org/10.1021/nl0156538
7. Chen S. M. Characterization and electrocatalytic properties of cobalt hexacyanoferrate films // Electrochim. Acta. 1998. Vol. 43, iss. 21–22. P. 3359–3369. DOI: https://doi.org/10.1016/S0013-4686(98)00074-7
8. Chen S. M., Lu M. F., Lin K. C. Preparation and characterization of ruthenium oxide/hexacyanoferrate and ruthenium hexacyanoferrate mixed films and their electrocatalytic properties // J. Electroanal. Chem. 2005. Vol. 579, iss. 1. P. 163–174. DOI: https://doi.org/10.1016/j.jelechem.2005.02.006
9. Sinha S., Humphery B. D., Bocarsly A. B. Reaction of Nickel Electrode Surfaces with Metal-Cyanide Anionic Complexes : The Formation of Precipitated Surfaces // Inorg. Chem. 1984. Vol. 23, iss. 2. P. 203–212. DOI: https://doi.org/10.1021/ic00170a018
10. Yang Y., Yan Y., Chen X., Zhai W., Xu Y., Liu Y. Investigation of a Polyaniline-Coated Copper Hexacyanoferrate Modified Glassy Carbon Electrode as a Sulfite Sensor // Electrocatalysis. 2014. Vol. 5, iss. 4. P. 344–353. DOI: https://doi.org/10.1007/s12678-014-0199-9
11. Siperko L. M., Kuwana T. Electrochemical and Spectroscopic Studies of Metal Hexacyanometalate Films // J. Electrochem. Soc. 1983. Vol. 130, iss. 2. P. 396–402. DOI: https://doi.org/10.1149/1.2119718
12. Neff V. D. Electrochemical Oxidation and Reduction of Thin Films of Prussian Blue // J. Electrochem. Soc. 1978. Vol. 125. P. 886–887. DOI: https://doi.org/10.1149/1.2131575
13. Eftekhari A. Deposition of stable electroactive films of polynuclear cyanides on to silicon surface // J. Electroanal. Chem. 2003. Vol. 558. P. 75–82. DOI: https://doi.org/10.1016/S0022-0728(03)00381-4
14. Karyakin A. A., Gitelmacher O. V., Karyakina E. E. Prusian Blue based first generation biosensor. A sensitive amperometric electrode for glucose // Anal. Chem. 1995. Vol. 67, iss. 14. P. 2419–2423. DOI: https://doi.org/10.1021/ac00110a016
15. Beheir S. G., Benyamin K., Mekhailf M. Chemical precipitation of cesium from waste solutions with iron (II) hexacyanocobaltate (III) and triphenylcyanoborate // J. Radioanal Nucl. Chem. 1998. Vol. 232. P. 147–150. DOI: https://doi.org/10.1007/BF02383731
16. Kaye S. S., Long J. R. Hydrogen Storage in the Dehydrated Prussian Blue Analogues M3[Co(CN)6]2 (M = Mn, Fe, Co, Ni, Cu, Zn) // J. Am. Chem. Soc. 2005. Vol. 127, iss. 18. P. 6506–6507. DOI: https://doi.org/10.1021/ja051168t
17. Shankaran D. S., Narayanan S. S. A comparative study of the electrocatalytic ac-tivities of some metal hexacyanoferrates for the oxidation of hydrazine // Fresenius J. Anal. Chem. 1999. Vol. 364. P. 686–689. DOI: https://doi.org/10.1007/s002160051414
18. Kingo Itaya, Isamu Uchida, Vernon D. Neff Electrochemistry of polynuclear transition metal cyanides prussian blue and its analogs // Acc. Chem. Res. 1986. Vol. 19. P. 162–168. DOI: https://doi.org/10.1021/ar00126a001
19. Garjonyte R., Malinauskas A. Electrocatalytic reactions of hydrogen peroxide at carbon paste electrodes, modified by some metal hexacyanoferrates // Sens. Actuators B. 1998. Vol. 46, iss. 3. P. 236–241. DOI: https://doi.org/10.1016/S0925-4005(98)00123-3
20. Garjonyte R., Malinauskas A. Operational stability of amperometric hydrogen peroxide sensors, based on ferrous and copper hexacyanoferrates // Sens. Actuators B. 1999. Vol. 56. P. 93–97. DOI: https://doi.org/10.1016/S0925-4005(99)00161-6
21. Nielsen P., Dresow B., Heinrich H. C. In vitro Study of 137Cs Sorption by Hex-acyanoferrates (II) // Z. Naturforsch. B. 1987. Vol. 42. P. 1451–1460. DOI: https://doi.org/10.1515/znb-1987-1114
22. Pabst W., Gregorova E. Characterization of Particles and Particle Systems. Prague : Institute of Chemical Technology, 2007. 122 p. URL: http://old.vscht.cz/sil/keramika/Characterization_of_particles/CPPS%20_English%20version_.pdf (дата обращения: 24.03.2020).
23. Kim H., Hong J., Park K. Y., Kim H., Kim S. W., Kang K. Aqueous rechargeable Li and Na ion batteries // Chemical Reviews. 2014. Vol. 114, iss. 23. P. 11788–11827. DOI: https://doi.org/10.1021/cr500232y
24. Andrieu X., Crepy G., Josset L. High power density electrodes for Carbon supercapacitor applications // Proceedings of the Third International Seminar on Double Layer Capacitors and Similar Energy Storage Devices. Deerfield Beach (FL), Florida Educational Seminars Inc., December 1993. P. 1469–1476.
25. Conway B. E. Transition from “Supercapacitor” to “Battery” behavior in electrochemical Energy Storage // J. Electrochem. Soc. 1991. Vol. 138. P. 1539–1548.
26. EIS Spectrum Analyser. On-line Help. URL: http://www.abc.chemistry.bsu.by/vi/analyser/parameters.html (дата обращения: 24.03.2020).