ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Kamenev Y. B., Shtompel' G. A., Chunts N. I. Accelerated charge method of the lead-acid batteries. 1. Constant current stage of the charge. Electrochemical Energetics, 2012, vol. 12, iss. 2, pp. 64-71. DOI: 10.18500/1608-4039-2012-12-2-64-71, EDN: PEVNLF

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 166)
Language: 
Russian
Heading: 
Article type: 
Article
EDN: 
PEVNLF

Accelerated charge method of the lead-acid batteries. 1. Constant current stage of the charge

Autors: 
Kamenev Yurii Borisovich, Scientific and Technological Center of JSC Elektrotyaga
Shtompel' Georgii Alekseevich, Scientific and Technological Center of JSC Elektrotyaga
Chunts Nataliya Ivanovna, Scientific and Technological Center of JSC Elektrotyaga
Abstract: 

Strategy of the accelerated mode of the charge, including constant current charge to 80 % state-of-charge and a pulse charge by asymmetric current to a full charge is offered. Results of the first investigation phase devoted to studying of influence of a mode constant current charge on a resource of lead-acid accumulators are presented in this work. Various influence of size of an initial charge current on degradation of positive and negative active materials and possibility of charge of the accumulator to 80 % state-of-charge for 0.5 h is demonstrated.

Reference: 

1. Агуф П. А., Дасоян М. А., Лызлов Н. Ю. Конструкцияи условия эксплуатации герметичного свинцового аккумулятора. М.: Информэлектро, 1984.
2. Rand D. И Valve-Regulated Lead-Acid Batteries. Amsterdam; Boston; London: Elsevier, 2004,
3. Каменев Ю. Б., Лушина M. В., Васина И. А. // Электрохим. энергетика. 2008. Т. 8, № 3. С. 146–151.
4. James М., Grumment J., Rowan М. // J. Power Sources. 2006. Vol. 162. Р. 878–883.
5. Lam L. T., Orgum H., Lim O. V. // J. Power Sources. 1995. Vol. 53. P. 215–228.
6. Kim S., Hong W. // J. Power Sources. 2000. Vol. 89. P. 93–101.
7. Valeriot T. M., Jochim D. M. // J. Power Sources. 1992. Vol. 40. P. 93–104.
8. Chang T. G., Valeriot T. M., Jochim D. M. // J. Power Sources. 1994. Vol. 48. P. 163–175.
9. Pavlov D., Petkova G., Dimitrov M. // J. Power Sources. 2000. Vol. 87. P. 39–56.
10. Pavlov D., Petkova G. // J. Power Sources. 2003. Vol. 113. P. 355–362.
11. Douglas D. L., Mao G. M. // J. Power Sources 4. Oriel, Newcastles-upon-Tyne. 1973. P. 561–567.
12. Pavlov D. // J. Power Sources. 1995. Vol. 53. P. 9–21.
13. Pavlov D. // J. Electrochem. Soc. 1984. Vol. 131. P. 1468–1476.
14. Pavlov D. // J. Electrochem. Soc. 1986. Vol. 133. P. 241–248.
15. Pavlov D., Balkanov B. // J. Electrochem. Soc. 1989. Vol. 136. P. 3189–3197.
16. Chang T. G., Bullock K. // J. Electrochem. Soc. 1984. Vol. 131. P. 1755–1761.
17. Bashtavelova E., Winsel A. // J. Power Sources. 1995. Vol. 53. P. 175–183.
18. Borger IV., Hillmcinc U. // J. Power Sources 1989. Vol. 12. P. 131–138.
19. Pavlov D., Bashtavelova E. // J. Electrochem. Soc. 1990. Vol. 30. P. 7–14.
20. Feikneeht W. // J. Chem. Phys. 1984. Vol. 49. P. 135.
21. Skyllas-Kazacos M. // J. Power Sources. 1984. Vol. 13. P. 55–64.
22. Skyllas-Kazacos M. // J. Electrochem. Soc. 1981. Vol. 128. P. 817–820.

Received: 
30.06.2012
Accepted: 
30.07.2012
Published: 
30.07.2012