Energy Storage with Titanium Modified Busopytic Electrodes

The work is devoted to the study of the electrochemical characteristics of prototype energy storage devices made on the basis of electrodes consisting of titanium-modified graphite woven material “busofit”. It is shown that the modification increases the specific values of the capacitance and the magnitude of the operating voltage.

Conductivity and permittivity of potassium polytitanate, modified ferrous (III) sulphate

In the temperature range from 25 to 100 °C, the behavior of the conductivity and the electrical characteristics of potassium polytitanate modified iron sulfate at a pH modifying solution from 2.0 to 9.0. The temperature dependence of ac-conductivity, permittivity, conductivity activation energy evaluated.

Impedance spectroscopy potassium polytitanate, modified sulfate cobalt (II). High temperatures

The behavior of the conductivity and of electrophysical characteristics of potassium polytitanate modified by cobalt (II) sulphate was investigated under the temperature from 100 to 800 °C. The temperature dependence of AC and DC-conductivity was found, activation energy was appreciated in the low and high temperature phases. A equivalent circuit describing the transport processes in the studied composite based on potassium polytitanate was proposed.-

Impedance spectroscopy of potassium polytitanate modified with cobalt salts

The new composite materials based on potassium polytitanate modified in the Co salt aqueous solutions were synthesized and characterized. On the bases of impedance research the high dielectric permittivity and ionic conductivity were reviled.