ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Goffman V. G., Sleptsov V. V., Gorokhovskii A. V., Gorshkov N. V., Kovyneva N. N., Sevryugin A. V., Vikulova M. A., Bainyashev A. M., Makarova A. D., Zaw Lwin K. Energy Storage with Titanium Modified Busopytic Electrodes. Electrochemical Energetics, 2020, vol. 20, iss. 1, pp. 20-?. DOI: 10.18500/1608-4039-2020-20-1-20-32, EDN: VNRHOB

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 191)
Language: 
Russian
Heading: 
Article type: 
Article
EDN: 
VNRHOB

Energy Storage with Titanium Modified Busopytic Electrodes

Autors: 
Goffman Vladimir Georgievich, The Saratov State Technical University of Gagarin Yu. A.
Sleptsov Vladimir Vladimirovich, Moscow Aviation Institute (State Technical University)
Gorokhovskii Aleksandr Vladilenovich, The Saratov State Technical University of Gagarin Yu. A.
Gorshkov Nikolai Vyacheslavovich, The Saratov State Technical University of Gagarin Yu. A.
Kovyneva Natal'ya Nikolaevna, The Saratov State Technical University of Gagarin Yu. A.
Sevryugin Aleksandr Vladislavovich, The Saratov State Technical University of Gagarin Yu. A.
Vikulova Mariya Aleksandrovna, The Saratov State Technical University of Gagarin Yu. A.
Bainyashev Aleksei Mikhailovich, The Saratov State Technical University of Gagarin Yu. A.
Makarova Anna Dmitrievna, The Saratov State Technical University of Gagarin Yu. A.
Zaw Lwin Kyaw, Moscow Aviation Institute (State Technical University)
Abstract: 

The work is devoted to the study of the electrochemical characteristics of prototype energy storage devices made on the basis of electrodes consisting of titanium-modified graphite woven material “busofit”. It is shown that the modification increases the specific values of the capacitance and the magnitude of the operating voltage.

Reference: 

1. Klimont A. A., Stakhanova S. V., Semushin K. A., Astakhov M. V., Kalashnik A. T., Galimzyanov R. R., Krechetov I. S., Kundu M. Polyaniline-containing composites based on high-porous carbon cloth for flexible supercapacitor electrodes. J. of Surface Investigation. X-Ray, Synchrotron and Neutron Techniques, 2017, vol. 9, pp. 44–51. DOI: https://doi.org/10.7868/S0207352817090074

2. Obruchikov A. V., Lebedev S. M. Application of carbon fiber material busofit for radioiodine control in gas emissions of nuclear power plants. Perspektivnye materialy, 2012, vol. 3, pp. 52–55.

3. Radkevich V. Z., Sen’ko T. L., Khaminets S. G., Vilson K., Egiazarov Y. K. Catalytic systems based on carbon fiber materials for low temperature monoxide of carbon oxidation. Catalysis in Industry, 2009, vol. 5, pp. 5.

4. Kim P., Jones S. C., Hotchkiss P. J., Haddock J. N., Kippelen B. Marder S. R., Perry J. W. Phosphonic acid-modiried barium titanate polymer nanocomposites with high permittivity and dielectric strength. Advanced Materials, 2007, vol. 19, no. 7, pp. 1001–1005. DOI: https://doi.org/10.1002/adma.200602422

5. Brennecka G. L., Parish C. M., Tuttle B. A., Brewer L. N. Multilayer thin and ultrathin film capacitors fabricated by chemical solution deposition. Journal of Materials Research, 2008, vol. 23, no. 1, pp. 176–181. DOI: https://doi.org/10.1557/JM R.2008.0010

6. Vehkamaki M., Hatanpaa T., Ritala M., Leskela M., Vayrynen S., Rauhala E. Atomic layer deposition of BaTiO3 thin films – Effect of barium hydroxide formation. Chemical Vapor Deposition, 2007, vol. 13, no. 5, pp. 239–246. DOI: https://doi.org/10.1002/cvde.200606538.

7. Taroata D., Fischer W.-J., Cheema T. A., Garnweitner G., Schmid G. High integration density capacitors directly integrated in a single copper layer of printed circuit boards. IEEE Transactions on Dielectrics and Electrical Insulation, 2012, vol. 19, no. 1, pp. 298–304. DOI: https://doi.org/10.1109/TDEI.2012.6148531

8. Vehkamaki M., Hatanpaa T., Hanninen T., Ritala M., Leskela M. Growth of SrTiO3 and BaTiO3 thin films by atomic layer deposition. Electrochemical and Solid State Letters, 1999, vol. 2, no. 10, pp. 504–506. DOI: https://doi.org/10.1149/1.1390884

9. Mantsurov A. A., Gorokhovsky A. V., Burmistrov I. N., Tret’yachenko E. V. Structure and properties of biocompatible surface layers obtained the chemical treatment of the titanium implants. Fundamental’nye issledovaniya [Fundamental Research], 2014, no. 11, pp. 311–315 (in Russian).

10. Goffman V. G., Gorokhovsky A. V., Burte E. P., Sleptsov V. V., Gorshkov N. V., Kovyneva N. N., Vikulova M. A., Nikitina N. V. Modified titanium electrodes for energy storage. Electrochemical Energetics, 2017, vol. 17, no. 4, pp. 225–234. DOI: https://doi.org/10.18500/1608-4039-2017-4-225-234

11. Stoller M. D., Ruoff R. S. Best practice methods for determining an electrode material’s performance for ultracapacitors. Energy & Environmental Science, 2010, vol. 3, no. 9, pp. 1294–1301. DOI: https://doi.org/10.1039/c0ee00074d

12. Goffman V. G., Sleptsov V. V., Kovyneva N. N., Gorshkov N. V., Telegina O. S., Gorokhovsky A. V. Effect of nanosized potassium polytitanate on the properties of proton-conducting composite based on phosphotungstic acid and polyvinyl alcohol. Theoretical and Experimental Chemistry, 2016, vol. 52, no. 5, pp. 318–322. DOI: https://doi.org/10.1007/s11237-016-9484-4

13. Varlamova T. M., Yurina E. S. Lithium perchlorate (tetrafluoroborate)-diethyl carbonate-propylene carbonate electrolyte systems. Russian J. of Physical Chemistry, 2006, vol. 80, no. 8, pp. 1265–1268.

14. Gorokhovskii A. V., Goffman V. G., Gorshkov N. V., Tret’yachenko E. V., Telegina O. S., Sevryugin A. Electrophysical properties of ceramic articles based on potassium polytitanate nanopowder modified by iron compounds. Glass and Ceramics, 2015, vol. 72, no. 1–2, pp. 54–56.

15. EIS Spectrum Analyser. Available at:  (accessed 18 February 2020).

Received: 
20.02.2020
Accepted: 
01.03.2020
Published: 
31.03.2020