Modified Titanium Electrodes for Energy Storage

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).


The work is devoted to the study of the influence of the titanium electrodes modofocation in acid and alkali solutions, on electrochemical, dielectric and capacitive characteristics. The paper shows that the film formed on the surface of titanium plates is likely to refer to one of the modifications of potassium titanate. Based on the obtained electrodes, prototype energy storage devices were assembled, which showed a significant increase in capacitance and operating voltage.


1. Chudinov E. A., Tkachuk S. A., Shishko V. S. Tekhnologicheskie osnovy proizvodstva litiy-ionnogo akkumulyatora [Technological bases of lithium-ion batteries prodaction]. Elektrokhimicheskaya Energetika [Eletrochemical energetics], 2015, vol. 15, no. 2, pp. 84–92 (in Russian).

2. Shipper F., Aurbach D. Proshloe, Nastoiashchee I Budushchee Litii-Ionnykh Akkumuliatorov: Kratkii Obzor [Past, Present and Future of Li-ion batteries: a short review]. Elektrokhimiia [Electrochemistry], 2016, vol. 52, no. 12, pp. 1229–1258 (in Russian).

3. Bushkova O. V., Yaroslavtseva T. V., Dobrovol’skiy Yu. A. Novye soli litiya v elektrolitakh dlya litiy-ionnykh akkumulyatorov (obzor) [New lithium salts in electrolytes for lithium-ion batteries (Review)]. Elektrokhimiia [Electrochemistry], 2017, vol. 53, no. 7, pp. 763–787 (in Russian).

4. Liang Q., Cao N., Song Z., Gao X., Hou L., Guo T., Qin X. Co-doped Li4Ti5O12 nanosheets with enhanced rate performance for lithium-ion batteries. Electrochim. Acta, 2017, vol. 251, pp. 407–414.

5. Bai L., Xue W., Li Y., Liu X., Li Y., Sun J. The Surface Behaviour of an Al-Li7La3Zr2O12 Solid Electrolyte. Ceramics International, 2017, vol. 43, no. 17, pp. 15805–15810.

6. Zhou K., Fan X., Chen W., Chen F., Wei X., Li A., Liu J. Nitrogen-doped Li4Ti5O12/carbon hybrids derived from inorganic polymer for fast lithium storage. Electrochim. Acta, 2017, vol. 247, pp. 132–138.

7. Gorokhovsky A. V., Palagin A. I., Panova L. G., Ustinova T. P., Burmistrov I. N., Aristov D. V. Manufacturing submicro-nanoscale potassium polytitanates and composite materials based on them. Nanotehnika [Nanotechnics], 2009, no. 3, pp. 38–44 (in Russian).

8. Sanchez-Monjaras T., Gorokhovsky A. V., Escalante-Garcia J. I. Molten salt synthesis and characterization of polytitanate ceramic precursors with varied TiO2/K2O molar ratio. J. Am. Cer. Soc., 2008, vol. 91, no. 9, pp. 3058–3065.

9. Maluangnont T., Chanlek N., Suksawad T., Tonket N., Saikhamdee P., Sukkha U., Vittayakorn N. Beyond soft chemistry–bulk and surface modifications of polycrystalline lepidocrocite titanate induced by post-synthesis thermal treatment. Dalton Transactions, 2017, vol. 46, no. 41, pp. 14277–14285.

10. Gorokhovsky A. V., Tretyachenko E. V., Goffman V. G., Gorshkov N. V., Fedorov F. S., Sevryugin A. V. Preparation and dielectric properties of ceramics based on mixed potassium titanates with the hollandite structure. Inorganic Materials, 2016, vol. 52, no. 6, pp. 587–592.

11. Gorokhovskii A. V., Gorshkov N. V., Burmistrov I. N., Goffman V. G., Tret’yachenko E. V., Sevryugin A. V., Fedorov F. S., Kovyneva N. N. Studying dispersions of ferroelectric nanopowders in dioctyl phthalate as dielectric media for capacitive electronic components. Technical Physics Letters, 2016, vol. 42, no. 6, pp. 659–662.

12. Tretyachenko E. V., Gorokhovsky A. V., Yurkov G. Y., Fedorov F. S., Vikulova M. A., Kovaleva D. S., Orozaliev E. E. Adsorption and photo-catalytic properties of layered lepidocrocite-like quasi-amorphous compounds based on modified potassium polytitanates. Particuology, 2014, vol. 17, pp. 22–28.

13. Mantsurov A. A., Gorokhovskiy A. V., Burmistrov I. N., Tretyachenko E. V. Stroenie i svoystva biosovmestimykh poverkhnostnykh sloev, poluchennykh pri khimicheskoy obrabotke titanovykh implantov [Structure and properties of biocompatible surface layers obtained under the chemical treatment of the titanium implants]. Fundamental’nye issledovaniya [Fundamental research], 2014, vol. 2, no. 11, pp. 311–315 (in Russian).

14. Wen H. B., Liu Q., Wijn J. De, Groot K. De, Cui F. Z. Preparation of bioactive microporous titanium surface by a new two-step chemical treatment. Journal of Materials Science: Materials in Medicine, 1998, vol. 9, pp. 121–128.

15. Wen H. B., Wolke J. G. C., de Wijn J. R., Liu Q., Cui F. Z., de Groota K. Fast precipitation of calcium phosphate layers on titanium induced by simple chemical treatments. Biomaterials, 1997, vol. 18, no. 22, pp. 1471–1478.

16. Jonasova L., Muller F. A., Helebrant A., Strnad J., Greil P. Biomimetic apatite formation on chemically treated titanium. Biomaterials, 2004, vol. 25, no. 7–8, pp. 1187–1194.

17. Macdonald J. R. Barsoukov E. Impedance Spectroscopy Theory, Experiment, and Applications. Canada, John Wiley & Sons, 2005. 595 p.

18. Goffman V. G., Gorokhovsky A. V., Sleptsov V. V., Gorshkov N. V., Telegina O. S., Kovnev A. V., Fedorov F. S. Polimernyiy protonprovodyaschiy kompozitsionnyiy material [Proton-conducting composite polymer material]. Patent RU no. 2529187, 2014 (in Russian).

19. Goffman V. G., Sleptsov V. V., Kovyneva N. N., Gorshkov N. V., Telegina O. S., Gorokhovsky A. V. Effect of Nanosized Potassium Polytitanate on the Properties of Proton-Conducting Composite Based on Phosphotungstic Acid and Polyvinyl Alcohol. Theoretical and Experimental Chemistry, 2016, vol. 52, no. 5, pp. 318–322.

20. Stoller M. D., Ruoff R. S. Best practice methods for determining an electrode material’s performance for ultracapacitors. Energy & Environmental Science, 2010, vol. 3, no. 9, pp. 1294–1301.

Full Text (PDF):
(downloads: 323)