Impedance spectroscopy of potassium polytitanate modified with cobalt salts

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).

The new composite materials based on potassium polytitanate modified in the Co salt aqueous solutions were synthesized and characterized. On the bases of impedance research the high dielectric permittivity and ionic conductivity were reviled.


1. Goffman V. G., Gorokhovsky A. V., Kompan M. M., Tretyachenko E. V., Telegina O. S., Kovnev A. V., Fedorov F. S Electrical properties of the potassium polytitanate compacts. J. of Alloys and Compounds, 2014, vol. 615, no. 12, pp. 526-S529. doi: 10.1016/j.jallcom.2014.01.121.
2. Telegina O. S., Goffman V. G., Gorokhovsky A. V., Kompan M. M., Tretyachenko E. V., Gorshkov N. V., Kovnev A. V. Izuchenie jelektrohimicheskih i jelektrofizicheskih svojstv titanata kalija interkalirovannogo AgI metodom impedansnoj spektroskopii [The study of electrochemical and electrical properties of potassium titanate intercalated AgI by impedance spectroscopy], Elektrokhimicheskaya energetika [Electrochemical energetics], 2013, no. 2, pp. 60–65 (in Russian).
3. Aguilar-Gonzalez M., Gorokhovsky A. V., Aguilar-Elguezabal A. Removal of lead and nickel from aqueous solutions by SiO2-doped potassium titanate. Mater. Sci. Eng. B, 2010, vol. 174, no. 1–3, pp.105–113. doi: 10.1016/j.mseb.2010.03.057.
4. Sanchez-Monjaras T., Gorokhovsky A. V., Escalante-Garcia J. I. Potassium polytitanates. Synthesis, characterizarion and thermal behavior by sintering of self-toughed ceramic materials. Book of Abstracts of VI International Conf. «Solid State Chemistry», Prague, 2004, 88 р.
5. Sanchez-Monjaras T., Gorokhovsky A. V., Escalante-Garcia J. I. Molten salt synthesis and characterization of polytitanate ceramic precursors with varied TiO2/K2O molar ratio. J. Amer. Ceram. Soc., 2008, vol. 91, no. 9, pp. 3058–3065. doi: 10.1111/j.1551–2916.2008.02574.x.
6. EIS Spectrum Analyser (2014). Available at: (accessed 05.08.2014).
7. Goffman V. G., Gorokhovsky A. V., Gorshkov N. V., Tretyachenko E. V., Telegina O. S., Kovnev A. V. Synthesis and electrochemical properties of potassium polytitanates doped. Vestnik SGTU [Messenger SSTU], 2013, no. 1. pp.107–111 (in Russian).
8. Ukshe E. A., Bukun N. G. Tverdye elektrolity [Solid electrolytes]. Moscow, Nauka Publ., 1977, 175 p. (in Russian).
9. Tonkonogov M. P. Dielectric spectroscopy of hydrogen bonded crystals, and proton relaxation. Advances in Physical Sciences, 1998, vol. 168, no. 1, pp. 29–54. doi: 10.3367/UFNr.0168.199801b.0029. (in Russian).
10. Grafov B. M. Elektrohimicheskie cepi peremennogo toka [Electrochemical AC circuit]. Moscow, Nauka Publ., 1973, 128 p. (in Russian).
11. Stojnov Z. B., Grafov B. M., Ukshe E. A., Savova-Stojnova B. S., Elkina V. V. Elektrohimicheskij impedans [Electrochemical impedance]. Moscow, Nauka Publ., 1991, 336 p. (in Russian).
12. Ostafijchuk B. K., Gasjuk I. M., Kajkan L. S., Ugorchuk V. V., Sulym P. O. Dijelektricheskie svojstva magnij-zameshhennoj litij-zheleznoj shpineli na osnove temperaturnyh impedansnyh issledovanij [Dielectric properties of magnesium-substituted lithium iron spinel thermal impedance studies]. Electrokhimicheskaya energetika [Elektrochemical energetics], 2011, Vol. 11, no. 1, pp. 18–25 (in Russian).
13. Poplavko Ju. M. Fizika dijelektrikov [Physics of Dielectrics]. Kiev, Vishhaya shkola Publ., 1980. 398 p. (in Russian).
14. Turik A. V., Radchenko G. S., Turik S. A., Chernobabov A. I. Giant piezoelectric and dielectric enhancement in disordered heterogeneous systems. Phys. the Solid State, 2004, Vol. 46, no. 12, pp. 2213–2216.
15. Uvarov N. F. Kompozicionnye tvjordye elektrolity [Compositional solid electrolytes]. Novosibirsk, SO RAN Publ., 2008, 258 p. (in Russian).

Full Text (PDF):
(downloads: 40)