ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)

For citation:

Savvina A. A., Karaseva E. V., Mochalov S. E., Kolosnitsyn V. S. Effect of lithium perchlorate concentration on lithium cation transference number in sulpholane solutions. Electrochemical Energetics, 2024, vol. 24, iss. 1, pp. 28-37. DOI: 10.18500/1608-4039-2024-24-1-28-37, EDN: XHNVLZ

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 70)
Article type: 

Effect of lithium perchlorate concentration on lithium cation transference number in sulpholane solutions

Savvina Aleksandra Alekseevna, Ufa Institute of Chemistry of the Russian Academy of Sciences
Karaseva Elena Vladimirovna, Institute of Organic Chemistry of the Ufa RAS Scientific Center
Mochalov Sergei Ernstovich, Institute of Organic Chemistry of the Ufa RAS Scientific Center
Kolosnitsyn Vladimir Sergeevich, Institute of Organic Chemistry of the Ufa RAS Scientific Center

To increase the accuracy of determining the lithium cation transference numbers we proposed to measure them at different values of the polarizing voltage and extrapolate the calculated values to the zero value of the polarizing voltage.

It was established that the lithium cation transference numbers increased linearly with the increasing concentration of LiClO4 solutions in sulfolane. It is assumed that the increase in the lithium cation transference numbers takes place due to the change in lithium perchlorate state in sulfolane solution and the mechanism of ion transfer. It was shown that the maximum cation conductivity was achieved at the concentration of lithium perchlorate sulfolane solution of about 2M.

  1.  Zugmann S., Gores H. J. Transference Numbers of Ions in Electrolytes. In: Kreysa G., Ota Ki., Savinell R. F., eds. Encyclopedia of Applied Electrochemistry. New York, NY, Springer, 2014, pp. 2086–2091.
  2.  Bruce P. G., Vincent C. A. Steady state current flow in solid binary electrolyte cells. J. Electroanal. Chem., 1987, vol. 225, iss. 1–2, pp. 1–17.
  3.  Bruce P. G., Evans J., Vincent C. A. Conductivity and transference number measurements on polymer electrolytes. Solid State Ionics, 1988, vol. 28–30, part 2, pp. 918–922.
  4.  Peled E., Menkin S. Review – SEI: Past, present and future. J. Electrochem. Soc., 2017, vol. 164, no. 7, pp. A1703–A1719.
  5.  Evans J., Vincent C. A., Bruce P. G. Electrochemical measurement of transference numbers in polymer electrolytes. Polymer, 1987, vol. 28, iss. 13, pp. 2324–2328.
  6.  Jia H., Xu Y., Zou L., Gao P., Zhang X., Taing B., Matthews B. E., Engelhard M. H., Burton S. D., Han K. S., Zhong L., Wang C., Xu W. Sulfone-based electrolytes for high energy density lithium-ion batteries. J. Power Sources, 2022, vol. 527, article no. 231171.
  7.  Pozyczka K., Marzantowicz M., Dygas J. R., Krok F. Ionic conductivity and lithium transference number of poly (ethylene oxide): LiTFSI system. Electrochimica Acta, 2017, vol. 227, pp. 127–135.
  8.  Shigenobu K., Dokko K., Watanabe M., Ueno K. Solvent effects on Li ion transference number and dynamic ion correlations in glyme- and sulfolane-based molten Li salt solvates. Phys. Chem. Chem. Phys., 2022, vol. 22, pp. 15214–15221.
  9.  Ugata Y., Chen Y., Sasagawa S., Ueno K., Watanabe M., Mita H., Shimura J., Nagamine M., Dokko K. Eutectic electrolytes composed of LiN(SO2F)2 and sulfones for Li-ion batteries. J. Phys. Chem. C, 2022, vol. 126, pp. 10024–10034.
  10.  Kolosnitsyn V. S., Sheina L. V., Mochalov S. E. Physicochemical and electrochemical properties of sulfolane solutions of lithium salts. Russ. J. Electrochem., 2008, vol. 44, no. 5, pp. 575–578.
  11.  Ren X., Chen S., Lee H., Mei D., Engelhard M. H., Burton S. D., Zhao W., Zheng J., Li Q., Ding M. S., Schroeder M., Alvarado J., Xu K., Meng Y. S., Liu J., Zhang J. G., Xu W. Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries. Chem, 2018, vol. 4, pp. 1877–1892.