ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Aleksandrov K. A., Batalov N. N., Kozlova Z. R., Surikov V. T. Degradation of matrix electrolyte under Molten Carbonate Fuel Cell environment. Electrochemical Energetics, 2007, vol. 7, iss. 1, pp. 21-?. , EDN: JVSEJD

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Language: 
Russian
Heading: 
Article type: 
Article
EDN: 
JVSEJD

Degradation of matrix electrolyte under Molten Carbonate Fuel Cell environment

Autors: 
Aleksandrov K. A., Institute of high-temperature Electrochemistry UB of RAS
Batalov Nikolai Nikolaevich, Institute of high-temperature Electrochemistry UB of RAS
Kozlova Z. R., Institute of high-temperature Electrochemistry UB of RAS
Surikov V. T., Institute of Chemistry of a Solid body UB of RAS
Abstract: 

The change in phase composition, dispersibility and morphology of ?-, ?- and ?-lithium aluminates, which are the components of molten carbonate fuel cell were investigated after long exposure in Li/KCO3 (62/38 vol.%) eutectic melt under H2, H2 + CO2 (20-mol.%) and 0.33 O2 + 0.67 CO2 atmospheres at 650°C. ?- , ?- , ?- aluminates and their mixtures were found to transform into ?-phase under oxidative atmosphere. Under reducing atmosphere both ?- and ?-phases always coexist. It was also found that degradation processes that is particle enlargement, decrease of specific surface and morphology change proceed at much higher rate in ?- and ?- phases than in ?-LiAlO2.

Key words: 
Reference: 

1. Broers G. H. J., Shenke M. // J. Amer. Chem. Soc. Natl. Meeting, Chicago, 1961. V. 111. P. 19.
2. Velden P. F. van // J. Trans. Faraday Soc. 1967. V. 63. P. 167.
3. Howaru S. A., Yau J. K., Anderson H. U. // J. Appl. Phys. 1989. V. 65. P. 1492.
4. Pat. 2469012 FR. МКИ C1 Н01М 8/14. Process for electrolyte structure with strontium titanate matrix for molten carbonate fuel cells.
5. Pat. 3,466,197 US. МКИ C1. H01 M8/02; H01 M8/14; H01 M27/16; H01 M27/20. Method of making carbonate electrolyte matrix and fuel cell therewith.
6. Бурмакин Е. И. и др. // Тр. ин-та электрохимии УФ АН СССР. 1977. Вып. 25. C. 75.
7. Бурмакин Е. И., Родигина Э. Н., Степанов Г. К., Синельников А. П. // Тр. ин-та электрохимии УФ АН СССР. 1975. Вып. 22. C. 84.
8. Broers G. H. J., Ballegoy H. J. van // 3me Journees intern. Etude piles combust. Bruxelles. 1969. P. 77.
9. Pat. US. 4,317, 865 МКИ C1. H01 M8/02. Ceria matrix material for molten carbonate fuel cell.
10. Wolcyrz M., Kepinski L. // J. Solid State Chem. 1992. V. 99. P. 409.
11. Castellanos M., West J. // Mater. Sci. 1979. V. 14. P. 450.
12. Pat. 0,090,141 EP. МКИ C1. H01 M8/02; H01 M8/14. Fused carbonate fuel cell.
13. Aubry J., Klein F. // Chim. Ind. – Gen. Chim. 1970. V. 103. P. 1641.
14. Maresio, Remeika // J. Chem. Phys., 1996. V. 44, № 44. P. 3143.
15. Dernier, Maines // Mater. Res. Bul. 1971. V. 6. P. 433.
16. Maresio // Acta Cryst. 1965. V. 19. P. 396.
17. Kinoshita K., Sim J. W., Ackerman J. P. // Mater. Res. Bul. Pergamon Press, Inc. Printed in the United States. 1978. V. 13. P. 445.
18. Низамова З. Р., Зырянов А. С., Александров К. А., Баталов Н. Н. // Фундаментальные проблемы электрохимической энергетики: Материалы V Междунар. конф. Саратов: Изд-во Cарат. ун-та, 2002. C. 122.
19. Vidya S. et al. // J. Power Sources. 2002. V. 112. P. 322.
20. Byker H. J. et al // High Temperature Fuel Cell and Development, Final Report for DOE Contract № EC-77-C-03–1485 for the Period June 1977 – September 1978 / Montana Energy and MHD Research and Development Institute. Butte, MT. 1978.
21. Eiichi Yazumoto, Kazuhito Haton, Takaharu Gamo // J. Power Sources. 1998. V. 71. P. 159.
22. Paetsch L. M., Doyon J. D., Farooque M. // Electrochem. Soc. 1993. V. 93. P. 88.
23. Suski L., Tarniowy M. // Mater. Sci. 2001. V. 36. P. 5119.
24. Takizawa K., Hagiwara A. // Power Sources. 2002. V. 109. P. 127.

Received: 
28.02.2007
Accepted: 
28.02.2007
Published: 
31.03.2007