Cathode material based on LiNi_(1/3)Mn_(1/3)Co_(1/3)O₂ and activated carbon for hybrid energy storage

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).

The structure and specific electrochemical characteristics of a mixed cathode material based on ground LiNi1/3Mn1/3Co1/3O2 (NMC111) and highly porous activated carbon YEC-8B were studied. The mixed material containing 35 wt. % NMC111 and 65 wt. % YEC-8B (based on the mass of active materials), has a specific capacity ∼70% higher in comparison with the cathode material based on pure coal YEC-8B. It was shown that while cycling a lithium-ion supercapacitor with a cathode based on this mixed material at high current densities, no significant changes took place in the electrochemical characteristics of the material. It was demonstrated that this type of cathode material has two advantages: at low current densities it displays the charge-discharge properties of the cathode material of a lithium-ion battery with high specific energy, and at high current densities, it functions as a material of a supercapacitor with high specific power.


1. Li B., Zheng J., Zhang H., Jin L., Yang D., Lv H., Shen C., Shellikeri A., Zheng Y., Gong R., Zheng J. P., Zhang C. Electrode Materials, Electrolytes, and Challenges in Nonaqueous Lithium-Ion Capacitors. Advanced Materials, 2018, vol. 30, iss. 17, article 1705670.

2. Nitta N., Wu F., Tae Lee J., Yushin G. Li-ion battery materials : present and future. Materials Today, 2015, vol. 18, iss. 5, pp. 252–264.

3. Zhao J., Burk A. F. Review on supercapacitors : Technologies and performance evaluation. Journal of Energy Chemistry, 2021, vol. 59, pp. 276–291.

4. Cericola D., Novak P., Wokaun A., Kötz R. Segmented bi-material electrodes of activated carbon and LiMn2O4 for electrochemical hybrid storage devices : Effect of mass ratio and C-rate on current sharing. Electrochimica Acta, 2011, vol. 56, iss. 3, pp. 1288–1293.

5. Wang F., Xiao S., Hou Y., Hu C., Liu L., Wu Y. Electrode materials for aqueous asymmetric supercapacitors. RSC Advances, 2013, vol. 3, pp. 13059–13084.

6. Cericola D., Kötz R. Hybridization of rechargeable batteries and electrochemical capacitors : Principles and limits. Electrochimica Acta, 2012, vol. 72, pp. 1–17.

7. Cericola D., Ruch P. W., Kötz R., Novak P., Wokaun A. Characterization of bi-material electrodes for electrochemical hybrid energy storage devices. Electrochemistry Communications, 2010, vol. 12, iss. 6, pp. 812–815.

8. Li G., Yang Z., Yin Z., Guo H., Wang Z., Yan G., Liu Y., Lic L., Wang J. Non-aqueous dual-carbon lithium-ion capacitors : A review. Journal of Materials Chemistry A, 2019, vol. 7, iss. 26, pp. 15541–15563.

9. Sun X., Zhang X., Huang B., Zhang H., Zhang D., Ma Y. (LiNi0.5Co0.2Mn0.3O2 + AC) / graphite hybrid energy storage device with high specific energy and high rate capability. Journal of Power Sources, 2013, vol. 243, pp. 361–368.

10. Cao W. J., Zheng J. P. Li-ion capacitors with carbon cathode and hard carbon/stabilized lithium metal powder anode electrodes. Journal of Power Sources, 2012, vol. 213, pp. 180–185.

11. Pasquier A. D., Plitz I., Gural J., Badway F., Amatucci G. G. Power-ion battery : Bridging the gap between Li-ion and supercapacitor chemistries. Journal of Power Sources, 2004, vol. 136, iss. 1, pp. 160–170.

12. Rong C., Chen S., Han J., Zhang K., Wang D., Mi X., Wei X. Hybrid supercapacitors integrated rice husk based activated carbon with LiMn2O4. Journal of Renewable and Sustainable Energy, 2015, vol. 7, article 023104.

13. Sun X., Zhang X., Zhang H., Xu N., Wang K., Ma Y. High performance lithium-ion hybrid capacitors with pre-lithiated hard carbon anodes and bifunctional cathode electrodes. Journal of Power Sources, 2014, vol. 270, pp. 318–325.

14. Hagena M., Caod W. J., Shellikeria A., Adamsa D., Chend X. J., Brandta W., Yturriagaa S. R., Wu Q., Read J. A., Jow T. R., Zheng J. P. Improving the speci?c energy of Li-Ion capacitor laminate cell using hybrid activated Carbon/LiNi0.5Co0.2Mn0.3O2 as positive electrodes. Journal of Power Sources, 2018, vol. 379, pp. 212–218.

15. Pandolfo A. G., Sivakkumar S. R., Nerkar J. Y. Rate capability of graphite materials as negative electrodes in lithium-ion capacitors. Electrochimica Acta, 2010, vol. 55, iss. 9, pp. 3330–3335.

16. Bockenfeld N., Placke T., Winter M., Passerini S., Balducci A. The influence of activated carbon on the performance of lithium iron phosphate based electrodes. Electrochimica Acta, 2012, vol. 76, pp. 130–136.

17. Chen S., Hu H., Wang C., Wang G., Yin J., Cao D. (LiFePO4 – AC) / Li4Ti5O12 hybrid supercapacitor : The effect of LiFePO4 content on its performance. Journal of Renewable and Sustainable Energy, 2012, vol. 4, article 033114.

18. Hu X., Huai Y., Lin Z., Suo J., Deng Z. A (LiFePO4 – AC) / Li4Ti5O12 Hybrid Battery Capacitor. Journal of the Electrochemical Society, 2007, vol. 154, iss. 11, pp. A1026–A1030.

19. Cheng L., Liu H.-J., Zhang J.-J., Xiong H.M., Xia Y.-Y. Nanosized Li4Ti5O12 Prepared by Molten Salt Method as an Electrode Material for Hybrid Electrochemical Supercapacitors. Journal of the Electrochemical Society, 2006, vol. 153, iss. 8, pp. A1472–A1477.

Full Text (PDF):
(downloads: 80)