ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


Для цитирования:

Бурашникова М. М., Паньшин Е. В. Влияние добавок углеродных нанотрубок и графена в активную массу отрицательного электрода свинцово-кислотного аккумулятора на его электрохимические характеристики // Электрохимическая энергетика. 2023. Т. 23, вып. 2. С. 95-106. DOI: 10.18500/1608-4039-2023-23-2-95-106, EDN: WHYSRI

Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0).
Полный текст в формате PDF(Ru):
(загрузок: 76)
Язык публикации: 
русский
Тип статьи: 
Научная статья
УДК: 
541.136
EDN: 
WHYSRI

Влияние добавок углеродных нанотрубок и графена в активную массу отрицательного электрода свинцово-кислотного аккумулятора на его электрохимические характеристики

Авторы: 
Бурашникова Марина Михайловна, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Паньшин Егор Викторович, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Аннотация: 

Исследованы электрохимические характеристики отрицательных электродов свинцово-кислотного аккумулятора с добавками углеродных нанотрубок и графена. Показано, что наиболее высокие значения емкостных характеристик электродов были получены при введении в отрицательную активную массу добавки углеродных нанотрубок. Методом импедансной спектроскопии исследованы процессы, происходящие на отрицательном электроде. Путем моделирования получена эквивалентная электрическая схема, адекватно аппроксимирующая полученные частотные зависимости. Рассчитаны элементы предложенной эквивалентной схемы. Установлено, что введение углеродных добавок увеличивает сопротивление R3, связанное с пористой структурой электродов.

Список источников: 
  1. Peters K. Negative plates in valve-regulated lead–acid batteries. In: Rand D. A. J., Moseley P. T., Garche J., Parker C. D., eds. Valve-Regulated Lead–Acid Batteries, Elsevier, Amsterdam, The Netherlands, 2004, pp. 135–162. https://doi.org/10.1016/B978-044450746-4/50007-6
  2. Nakamura K., Shiomi M., Takahashi K., Tsubota M. Failure modes of valve-regulated lead–acid batteries. J. Power Sources, 1996, vol. 59, pp. 153–157. https://doi.org/10.1016/0378-7753(95)02317-8
  3. Shiomi M., Funato T., Nakamura K., Takahashi K., Tsubota M. Effects of carbon in negative plates on cycle-life performance of valve-regulated lead–acid batteries. J. Power Sources, 1997, vol. 64, pp. 147–152. https://doi.org/10.1016/S0378-7753(96)02515-3
  4. Kogure K., Tozuka M., Shibahara T., Minoura S., Saka M. Development of lead–acid batteries for idling stop–start system (ISS) use. Proc. 9th International Conference on Lead–Acid Batteries, LABAT’2014. Albena, Bulgaria, 2014, article no. 36.
  5. Moseley P. T., Rand D. A. J., Peters K. Enhancing the performance of lead–acid. batteries with carbon – in pursuit of an understanding. J. Power Sources, 2015, vol. 295, pp. 268–274. https://doi.org/10.1016/j.jpowsour.2015.07.009
  6. Settelein J., Oehm J., Bozkaya B., Leicht H., Wiener M., Reichenauer G., Sextla G. The external surface-area of carbon additives as key to enhance the dynamic charge-acceptance of lead–carbon electrodes. J. Energy Storage, 2018, vol. 15, pp. 196–204. https://doi.org/10.1016/j.est.2017.11.016
  7. Moseley P. T. Consequences of including carbon in the negative plates of valveregulated lead–acid batteries exposed to high-rate partial-state-of-charge operation. J. Power Sources, 2009, vol. 191, pp. 134–138. https://doi.org/10.1016/j.jpowsour.2008.08.084
  8. Karden E., Buller S., Doncker R. W. De Frequency domain approach to dynamical modeling of electrochemical power sources. Electrochim. Acta, 2002, vol. 47, pp. 2347–2356. https://doi.org/10.1016/S0013-4686(02)00091-9
  9. Srinivasan V., Wang G. Q., Wang C. Y. Mathematical modelling of current-interrupt and pulse operation of VRLA cells. J. Electrochem. Soc., 2003, vol. 150, pp. A316–A325.
  10. Pavlov D., Rogachev T., Nikolov P., Petkova G. Mechanism of action of electrochemically active carbons on the processes that take place at the negative plates of lead–acid batteries. J. Power Sources, 2009, vol. 191, pp. 58–75. https://doi.org/10.1016/j.jpowsour.2008.11.056
  11. Pavlov D., Nikolov P. Capacitive carbon and electrochemical lead electrode systems at the negative plates of lead–acid batteries and elementary processes on cycling. J. Power Sources, 2013, vol. 242, pp. 380–399. https://doi.org/10.1016/j.jpowsour.2013.05.065
  12. Bača P., Micka K. Křivík P., Tonar K., Tošer P. Study of the influence of carbon on negative lead–acid battery electrodes. J. Power Sources, 2011, vol. 196, pp. 3988–3992. https://doi.org/10.1016/j.jpowsour.2010.11.046
  13. Micka K., Calábek M., Bača P., Křivík P., Lábus R., Bilko R. Studies of doped negative valve-regulated lead–acid battery electrodes. J. Power Sources, 2009, vol. 191, pp. 154–158. https://doi.org/10.1016/j.jpowsour.2009.01.014
  14. Křivík P., Micka K., Bača P., Tonar K., Tošer P. Effect of additives on the performance of negative lead–acid battery electrodes during formation and partial-stateof-charge operation. J. Power Sources, 2012, vol. 209, pp. 15–19. https://doi.org/10.1016/j.jpowsour.2011.11.058
  15. Xiang J., Ding P., Zhang H., Wu X., Chen J., Yan Y. Beneficial effects of activated carbon additives on the performance of negative lead–acid battery electrode for high-rate partial-state-of-charge operation. J. Power Sources, 2013, vol. 241, pp. 150–158. https://doi.org/10.1016/j.jpowsour.2013.04.106
  16. Tong P., Zhao R., Zhang R., Yi F., Shi G., Li A., Chen H. Characterization of lead(II)-containing activated carbon and its excellent performance of extending lead–acid battery cycle-life for high-rate partial-state-of-charge operation. J. Power Sources, 2015, vol. 286, pp. 91–102. https://doi.org/10.1016/j.jpowsour.2015.03.150
  17. Baker S. V., Moseley P. T., Turner A. D. The role of additives in the positive active mass of the lead–acid cell. J. Power Sources, 1989, vol. 27, pp. 127–143. https://doi.org/10.1016/0378-7753(89)80127-2
  18. Hollenkamp A. F. Carbon additives. In: Garche J., Dyer C., Moseley P. T., Ogumi Z., Rand D. A. J., Scrosati B., eds. Encyclopedia of Electrochemical Power Sources. Elsevier, Amsterdam, The Netherlands, 2009, vol. 4, pp. 638–647. https://doi.org/10.1016/B978-044452745-5.00152-0
  19. Furukawa J., Smith K., Lam L. T., Rand D. A. J. Towards sustainable road transport with the UltraBatteryTM. In: Garche J., Karden E., Moseley P. T., Rand D. A. J., eds. Lead–Acid Batteries for Future Automobiles. Elsevier, Amsterdam, The Netherlands, 2017, pp. 349–391. https://doi.org/10.1016/B978-0-444-63700-0.00012-X
  20. Borger A., Ebner E., Calles S., Budde-Meiwes H., Schulte D., Kowal J., Sauer D. U. Impedance spectra of enhanced flooded batteries for micro-hybrid applications. J. Energy Storage, 2017, vol. 13, pp. 457–462. https://doi.org/10.1016/j.est.2017.07.007
Поступила в редакцию: 
29.05.2023
Принята к публикации: 
20.06.2023
Опубликована: 
30.06.2023