Cd|KOH|NiOOH

Zn|NH4CI|MnO2

Li|LiClO4|MnO2

Pb|H2SO4|PbO2

H2|KOH|O2

Активированный уголь марки «NORIT B Test EUR» как электродный материал суперконденсатора

Методами циклической вольамперометрии, гальваностатических заряд-разрядных кривых и импедансной спектроскопии оценены электрохимические характеристики электродного материала на основе активированного угля марки «NORIT B Test EUR» в 1 М растворе сульфата натрия. Установлено, что данный материал обладает невысоким сопротивлением, а удельная ёмкость электрода составила 45 Ф/г.

Литература

1. Kotz R., Carlen M. Principles and applications of electrochemical capacitors // Electrochim. Acta. 2000. Vol. 45. P. 2483–2498. DOI: https://doi.org/10.1016/S0013-4686(00)00354-6

2. Frackowiak E., Béguin F. Carbon materials for the electrochemical storage of energy in capacitors // Carbon. 2001. Vol. 39. P. 937–950.

3. Dubal D., Kim J., Kim Y., Holze R., Lokhande C., Kim W. Supercapacitors Based on Flexible Substrates // Energy Technology. 2014. Vol. 2, № 4. P. 325–341. DOI: https://doi.org/10.1002/ente.201300144

4. Chmiola J., Yushin G., Dash R., Gogotsi Y. Effect of pore size and surface area of carb ide derived carbons on specific capacitance // J. Power Sources. 2006. Vol. 158, № 1. P. 765–772. DOI: https://doi.org/10.1016/j.jpowsour.2005.09.008

5. Губин С. П., Рычагов А. Ю., Чупров П. Н., Ткачев С. В., Корнилов Д. Ю., Алмазова А. С., Краснова Е. С., Воронов В. А. Cуперконденсатор на основе электрохимически восстановленного оксида графена // Электрохимическая энергетика. 2015. Т. 15, № 2. С. 57–63.

6. Чепурная И. А., Логвинов С. А., Карушев М. П., Тимонов А. М., Малев В. В. Модификация электродов суперконденсаторов полимерными металлокомплексами: методы и результаты // Электрохимия. 2012. Т. 48, № 5. С. 590–597.

7. Вольфкович Ю. М., Михалин А. А., Бограчев Д. А., Сосенкин В. Е. Углеродные электроды с большой псевдоёмкостью для суперконденсаторов // Электрохимия. 2012. Т. 48, № 4. С. 467–477.

8. Song H., Hwang H., Lee К., Dao L. The effect of pore size distribution on the frequency dispersion of porous electrodes // Electrochim. Acta. 2000. Vol. 45, № 14. P. 2241–2257. DOI: https://doi.org/10.1016/S0013-4686(99)00436-3

9. Грызлов Д. Ю., Рычагов А. Ю., Скундин А. М., Кулова Т. Л. Исследование активированного угля серии P2 компании ENER G2 в качестве материала для суперконденсаторов с неводным электролитом // Электрохимическая энергетика. 2015. Т. 15, № 4. С. 160–166. DOI: 10.18500/1608-4039-2015-15-4-160-166

10. Lufrano F., Staiti P. Mesoporous carbon materials as electrodes for electrochemical supercapacitors // Int. J. Electrochem. Sci. 2010. Vol. 5. P. 903–916.

11. Qu D., Shi H. Studies of activated carbons used in double-layer capacitors // J. Power Sources. 1998. Vol. 74, № 1. P. 99–107. DOI: https://doi.org/10.1016/S0378-7753(98)00038-X

12. Tsay K.-C., Zhang L., Zhang J. Effects of electrode layer composition/thickness and electrolyte concentration on both specific capacitance and energy density of supercapacitor // Electrochim. Acta. 2012. Vol. 60. P. 428–436. DOI: https://doi.org/10.1016/j.electacta.2011.11.087

13. Burke A. Ultracapacitors: why, how, and where is the technology // J. Power Sources. 2000. Vol. 91, № 1. P. 37–50. DOI: https://doi.org/10.1016/S0378-7753(00)00485-7

14. Ruiz V., Santamaría R., Granda M., Blanco C. Long-term cycling of carbon based supercapacitors in aqueous media // Electrochim. Acta. 2009. Vol. 54, № 19. P. 4481–4486. DOI: https://doi.org/10.1016/j.electacta.2009.03.024

15. Wang Q., Yan J., Wang Y., Wei T., Zhang M., Jing X., Fan Z. Three-dimensional flower-like and hierarchical porous carbon materials as high-rate performance electrodes for supercapacitors // Carbon. 2014. Vol. 67. P. 119–127. DOI: https://doi.org/10.1016/j.carbon.2013.09.070

16. Wang J., Yang Y., Huang Z., Kang F. A high-performance asymmetric supercapacitor based on carbon and carbon–MnO2 nanofiber electrodes // Carbon. 2013. Vol. 61. P. 190–199. DOI: https://doi.org/10.1016/j.carbon.2013.04.084

17. Barcia O., D’Elia E., Frateur I., Mattos O., Pébère N., Tribollet B. Application of the impedance model of de Levie for the characterization of porous electrodes // Electrochim. Acta. 2002. Vol. 47. P. 2109–2116. DOI: https://doi.org/10.1016/S0013-4686(02)00081-6

18. Taberna P., Simon P., Fauvarque J. Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors // Journal of the Electrochemical Society. 2003. Vol. 150, № 3. P. 292–300. DOI: https://doi.org/10.1149/1.1543948

19. Kalluri R., Biener M., Suss M., Merrill M., Stadermann M., Santiago J., Baumann T., Biener J., Striolo A. Unraveling the potential and pore-size dependent capacitance of slit-shaped graphitic carbon pores in aqueous electrolytes // Physical Chemistry Chemical Physics. 2013. Vol. 15. P. 2309–2320. DOI: https://doi.org/10.1039/C2CP43361C

20. Zuliani J., Caguiat J., Kirk D., Jia C. Considerations for consistent characterization of electrochemical double-layer capacitor performance // J. Power Sources. 2015. Vol. 290. P. 136–143. DOI: https://doi.org/10.1016/j.jpowsour.2015.04.019

21. Hu C., Wang C. Nanostructures and capacitive characteristics of hydrous manganese oxide prepared by electrochemical deposition // Journal of the Electrochemical Society. 2003. Vol. 150, № 8. P. 1079–1084. DOI: https://doi.org/10.1149/1.1587725

22. Gamby J., Taberna P., Simon P., Fauvarque J., Chesneau M. Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors // J. Power Sources. 2001. Vol. 101, № 1. P. 109–116. DOI: https://doi.org/10.1016/S0378-7753(01)00707-8

23. Sugimoto W., Yokoshima K., Murakami Y., Takasu Y. Charge storage mechanism of nanostructured anhydrous and hydrous ruthenium-based oxides // Electrochim. Acta. 2006. Vol. 52. P. 1742–1748.

стр. 192
Текст в формате PDF:
(downloads: 121)