ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


lithium-ion battery

Manganese-Doped Titanium Dioxide with Improved Electrochemical Performance for Lithium-Ion Batteries

Within the work, an influence of manganese dopant on electrochemical performance of anatase titanium dioxide (Mn/Ti = 0.05; 0.1; 0.2) had been investigated. It was established that incorporation of Mn3+ into the TiO2 lattice results in the formation of Ti1 ? xMnxO2 solid solution and increased anatase unit cell volume from 136.41 A3 (undoped sample) to 137.25 A3 (Mn/Ti = 0.05). The conductivity of doped TiO2 rises up to two orders in magnitude.

Vanadium-Doped Bronze Titanium Dioxide as Anode Material for Lithium-ion Batteries with Enchanced Cycleability and Rate Performance

Nanotubes of bronze titanium dioxide (TiO2(B)) doped with vanadium were synthesized through hydrothermal reaction. The obtained material possesses mesoporous structure and large specific surface area of 180 m2/g. It was found that the incorporation of vanadium into TiO2(B) lattice increases the volume of a unit cell. Additionally, the conductivity rose up to three orders of magnitude for doped titanium dioxide reaching the value of 1.70 ? 10 ? 8 S/cm.

The Active Materials Ratio in Electrodes of Lithium-Ion Batteries: Optimisation Problems

Using literature information about the temperature effect on the electrochemical behavior of electrodes based on LiFePO4 and Li4Ti5O12 being positive and negative electrodes of a lithium­ion battery, the discharge characteristics of batteries with such electrodes and various ratios of the amount of active material on the electrodes in the temperature range from ?15 to +60°C were calculated.

Pages