Manganese-Doped Titanium Dioxide with Improved Electrochemical Performance for Lithium-Ion Batteries

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).

Within the work, an influence of manganese dopant on electrochemical performance of anatase titanium dioxide (Mn/Ti = 0.05; 0.1; 0.2) had been investigated. It was established that incorporation of Mn3+ into the TiO2 lattice results in the formation of Ti1 − xMnxO2 solid solution and increased anatase unit cell volume from 136.41 Å3 (undoped sample) to 137.25 Å3 (Mn/Ti = 0.05). The conductivity of doped TiO2 rises up to two orders in magnitude. Ti0.95Mn0.05O2 electrode delivers a capacity of 186 mA⋅h/g after 30 charge/discharge cycles at C/10, whereas the undoped TiO2 gives only 87 mA⋅h/g. At a high current rate of 2С the doped TiO2 (Mn/Ti = 0.05) maintains a reversible capacity of about 121 mA⋅h/g.


1. Kulova T. L. New electrode materials for lithium-ion batteries (Review). Russ. J. Electrochem., 2013, vol. 49, pp. 1–25. DOI:

2. Ivanishchev A. V., Ushakov A. V., Ivanishcheva I. A., Churikov A. V., Mironov A. V., Fedotov S. S., Khasanova N. R., Antipov E. V. Structural and electrochemical study of fast Li diffusion in Li3V2(PO4)3-based electrode material. Electrochim. Acta, 2017, vol. 230, pp. 479–491. DOI:

3. Fehse M., Ventosa E. Is TiO2(B) the future of titanium-based battery materials? ChemPlusChem, 2015, vol. 80, pp. 785–795. DOI:

4. Khan M. A., Yang J., Kang Y.-M. Facile synthesis of low cost anatase titania nanotubes and its electrochemical performance. Electrochim. Acta, 2015, vol. 182, pp. 629–638. DOI:

5. Madej E., La Mantia F., Mei B., Klink S., Muhler M., Schuhmann W., Ventosa E. Reliable benchmark material for anatase TiO2 in Li-ion batteries : On the role of dehydration of commercial TiO2. J. Power Sources, 2014, vol. 266, pp. 155–161. DOI:

6. Armstrong G., Armstrong A. R., Bruce P. G., Reale P., Scrosati B. TiO2(B) nanowires as an improved anode material for lithium-ion batteries containing LiFePO4 or LiNi0.5Mn1.5O4 cathodes and a polymer electrolyte. J. Adv. Mater., 2006, vol. 18, pp. 2597–2600. DOI:

7. Makhov S. V., Ushakov A. V., Ivanishchev A. V., Gridina N. A., Churikov A. V., Gamayunova I. M., Volynskii V. V., Klyuev V. V. Peculiarities of lithium pentatitanate and lithium-vanadium(III) phosphate joint operation in the lithium-accumulating system. Electrochemical Energetics, 2017, vol. 17, no. 2. pp. 99–119. DOI: (in Russian)

8. Ushakov A. V., Makhov S. V., Gridina N. A., Ivanishchev A. V., Gamayunova I. M. Rechargeable lithium-ion system based on lithium-vanadium(III) phosphate and lithium titanate and the peculiarity of it functioning. Monatsh. Chem., 2019, vol. 150, iss. 3. pp. 499–509. DOI:–019–2374–4

9. Redel K., Kulka A., Plewa A., Molendaz J. High-performance Li-rich layered transition metal oxide cathode materials for Li-ion batteries. J. Electrochem. Soc., 2019, vol. 166, pp. A5333–A5342. DOI:

10. Game O., Kumari T., Singh U., Aravindan V., Madhavi S., Ogale S. B. (001) faceted mesoporous anatase TiO2 microcubes as superior insertion anode in practical Li-ion configuration with LiMn2O4. Energy Storage Materials, 2016, vol. 3, pp. 106–112. DOI:

11. Jeong J.-H., Jung D., Shin E. W., Oh E.-S. Boron-doped TiO2 anode materials for high-rate lithium ion batteries. J. Alloys Compd., 2014, vol. 604, pp. 226–232. DOI:

12. Han C., Yang D., Yang Y., Jiang B., He Y., Wang M., Song A.-Y., He Y.-B., Li B., Lin Z. Hollow titanium dioxide spheres as anode material for lithium ion battery with largely improved rate stability and cycle performance by suppressing the formation of solid electrolyte interface layer. J. Mater. Chem. A, 2015, vol. 3, pp. 13340–13349. DOI:

13. Lupo F. Di, Tuel A., Mendez V., Francia C., Meligrana G., Bodoardo S., Gerbaldi C. Mesoporous TiO2 nanocrystals produced by a fast hydrolytic process as high-rate long-lasting Li-ion battery anodes. Acta Mater., 2014, vol. 69, pp. 60–67. DOI:

14. Yi T.-F., Yang S.-Y., Xie Y. Recent advances of Li4Ti5O12 as a promising next generation anode material for high power lithium-ion batteries. J. Mater. Chem. A, 2015, vol. 3, pp. 5750–5777. DOI:

15. Lewis C. S., Li Y. R., Wang L., Li J., Stach E. A., Takeuchi K. J., Marschilok A. C., Takeuchi E. S., Wong S. S. Correlating titania nanostructured morphologies with performance as anode materials for lithium-ion batteries. ACS Sustainable Chem. Eng., 2016, vol. 4, pp. 6299–6312. DOI:

16. Kyeremateng N. A., Vacandio F., Sougrati M.-T., Martinez H., Jumas J.-C., Knauth P., Djenizian T. Effect of Sn-doping on the electrochemical behaviour of TiO2 nanotubes as potential negative electrode materials for 3D Li-ion micro batteries. J. Power Sources, 2013, vol. 224, pp. 269–277. DOI:

17. Opra D. P., Gnedenkov S. V., Sinebryukhov S. L., Voit E. I., Sokolov A. A., Modin E. B., Podgorbunsky A. B., Sushkov Y. V., Zheleznov V. V. Characterization and electrochemical properties of nanostructured Zr-doped anatase TiO2 tubes synthesized by sol-gel template route. J. Mater. Sci. Technol., 2017, vol. 33, pp. 527–534. DOI:

18. Gnedenkov S. V., Sinebryukhov S. L., Zheleznov V. V., Opra D. P., Voit E. I., Modin E. B., Sokolov A. A., Ustinov A. Yu., Sergienko V. I. Effect of Hf-doping on electrochemical performance of anatase TiO2 as an anode material for lithium storage. Royal Society Open Science, 2018, vol. 58, article ID 171811. DOI:

19. Lai Y., Liu W., Fang J., Qin F., Wang M., Yu F., Zhang K. Fe-doped anatase TiO2/carbon composite as an anode with superior reversible capacity for lithium storage. RSC Advances, 2015, vol. 5, pp. 93676–93683. DOI:

20. Thi T. V., Rai A. K., Gim J., Kim S., Kim J. Effect of Mo6+ doping on electrochemical performance of anatase TiO2 as a high performance anode material for secondary lithium-ion batteries. J. Alloys Compd., 2014, vol. 598, pp. 16–22. DOI:

21. Wang Y., Smarsly B. M., Djerdj I. Niobium doped TiO2 with mesoporosity and its application for lithium insertion. Chem. Mater., 2010, vol. 22, pp. 6624–6631. DOI:

22. Wang Y., Chen T., Mu Q. Electrochemical performance of W-doped anatase TiO2 nanoparticles as an electrode material for lithium-ion batteries. J. Mater. Chem., 2011, vol. 21, pp. 6006–6013. DOI:

23. Ali Z., Cha S. N., Sohn J. I., Shakir I., Yan C., Kim J. M., Kang D. J. Design and evaluation of novel Zn doped mesoporous TiO2 based anode material for advanced lithium ion batteries. J. Mater. Chem., 2012, vol. 22, pp. 17625–17629. DOI:

24. Anh L. T., Rai A. K., Thi T. V., Gim J., Kim S., Shin E.-C., Lee J.-S., Kim J. Improving the electrochemical performance of anatase titanium dioxide by vanadium doping as an anode material for lithium-ion batteries. J. Power Sources, 2013, vol. 243, pp. 891–898. DOI:

25. Xie J., Jiang D., Chen M., Li D., Zhu J., Lu X., Yan C. Preparation and characterization of monodisperse Ce-doped TiO2 microspheres with visible light photocatalytic activity. Colloids Surf., A : Physicochemical and Engineering Aspects, 2010, vol. 372, pp. 107–114. DOI:

26. Opra D. P., Gnedenkov S. V., Sinebryukhov S. L., Voit E. I., Sokolov A. A., Ustinov A. Yu., Zheleznov V. V. Zr4+/F co-doped TiO2(anatase) as high performance anode material for lithium-ion battery. Progress in Natural Science : Materials International, 2018, vol. 28, pp. 542–547. DOI:

27. Lin C. Y. W., Nakaruk A., Sorrell C. C. Mn-doped titania thin films prepared by spin coating. Prog. Org. Coat., 2012, vol. 74, pp. 645–647. DOI:

28. Benjwal P., Kar K. K. Removal of methylene blue from wastewater under a low power irradiation source by Zn, Mn co-doped TiO2 photocatalysts. RSC Advances, 2015, vol. 5, pp. 98166–98176. DOI:

29. Sekhar M. C., Reddy B. P., Vattikuti S. V. P., Shanmugam G., Ahn C.-H., Park S.-H. Structural, magnetic, and catalytic properties of Mn-doped titania nanoparticles synthesized by a sol–gel process. J. Cluster Sci., 2018, vol. 29, pp. 1255–1267. DOI:

30. Biesinger M. C., Payne B. P., Grosvenor A. P., Lau L. W. M., Gerson A. R., Smart R. St.C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides : Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci., 2011, vol. 257, pp. 2717–2730. DOI:

31. Jing M., Li J., Han C., Yao S., Zhang J., Zhai H., Chen L., Shen X., Xiao K. Electrospinning preparation of oxygen-deficient nano TiO2 − x/carbon fibre membrane as a self-standing high performance anode for Li-ion batteries. Royal Society Open Science, 2017, vol. 4, article ID 170323. DOI:

32. Andreozzi G. B., Cellucci F., Gozzi D. High-temperature electrical conductivity of FeTiO3 and ilmenite. J. Mater. Chem., 1996, vol. 6, pp. 987–991. DOI:

33. Siwiсska-Stefaсskaa K., Kur B. A composite TiO2-SiO2-ZrO2 oxide system as a high-performance anode material for lithium-ion batteries. J. Electrochem. Soc., 2017, vol. 164, pp. A728–A734. DOI:

34. Liu H.-L., Zhao W., Li R.-Z., Huang X.-Y., Tang Y.-F., Li D.-M., Huang F.-Q. Facile synthesis of reduced graphene oxide in-situ wrapped MnTiO3 nanoparticles for excellent lithium storage. J. Inorg. Mater., 2018, vol. 33, pp. 1022–1028. DOI:

35. Guo S., Liu J., Qiu S., Liu W., Wang Y., Wu N., Guo J., Guo Z. Porous ternary TiO2/MnTiO3/C hybrid microspheres as anode materials with enhanced electrochemical performances. J. Mater. Chem. A, 2015, vol. 3, pp. 23895–23904. DOI:

36. Lei C., Gou Q., Li C., Zhang X., Zhang B., Huang D. Facile synthesis of porous ternary MnTiO3/TiO2/C composite with enhanced electrochemical performance as anode materials for lithium ion batteries. Energy Technology, 2018, vol. 7, iss. 5, 1899761(1–11). DOI:

37. Li T., Guo C., Sun B., Li T., Li Y., Hou L., Wei Y. Well-shaped Mn3O4 tetragonal bipyramids with good performance for lithium ion batteries. J. Mater. Chem. A, 2015, vol. 3, pp. 7248–7254. DOI:

38. Jian G., Xu Y., Lai L.-C., Wang C., Zachariah M. R. Mn3O4 hollow spheres for lithium-ion batteries with high rate and capacity. J. Mater. Chem. A, 2012, vol. 2, pp. 4627–4632. DOI:

39. Zhang W., Gong Y., Mellott N. P., Liu D., Li J. Synthesis of nickel doped anatase titanate as high performance anode materials for lithium ion batteries. J. Power Sources, 2015, vol. 276, pp. 39–45. DOI:

40. Ur-Rehman A., Ali G., Badshah A., Chung K. Y., Nam K.-W., Jawad M., Arshadf M., Abbas S. M. Superior shuttling of lithium and sodium ions in manganese-doped titania/functionalized multiwall carbon nanotube anodes. $Na\-nos\-ca\-le$, 2017, vol. 9, pp. 9859–9871. DOI:

Full Text (PDF):
(downloads: 98)