ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


electrodeposition

Lithiation of electrodeposited silicon films

Lithium-ion batteries with improved performance are increasingly in demand in various fields. Silicon-based materials are one of the most actively studied materials, because they allow increasing the discharge capacity of the anode. In this work, we continue studying the behavior of the thin-film silicon anodes inside the anode half-cell of a lithium-ion battery in the conditions of limited charge capacity to 1000 and 4000 mA·h/g.

Behavior of electrodeposited silicon film on glassy carbon during lithiation and delithiation

Silicon is one of the promising anode materials for lithium-ion batteries with enhanced performance. However, the degradation of silicon during lithiation/delithiation is still the main problem that prevents it commercial use as electrodes. In this work the behavior of a silicon film of about 5–6 µm thick electrodeposited from LiCl-KCl-CsCl-K2SiF6 melt on glassy carbon was studied during its lithiation and delithiation, the film being a part of the anode half-cell of a lithium-ion battery.

Ni-Mo and Ni-Mo-Co composite catalytic alloys for alkaline water electrolysis

Currently, a large number of studies on alkaline water electrolysis are being carried out with the aim of reducing the specific energy costs for the hydrogen evolution reaction and the oxygen evolution reaction. This work is devoted to the methods of synthesis of highly dispersed composite coating on the surface of nickel foam and the methods of the formation of bi- and ternary catalytic alloys based on molybdenum using electrochemical deposition.