ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Leonova A. M., Leonova N. M., Suzdal'tsev A. V. Behavior of electrodeposited silicon film on glassy carbon during lithiation and delithiation. Electrochemical Energetics, 2024, vol. 24, iss. 3, pp. 150-160. DOI: 10.18500/1608-4039-2024-24-3-150-160, EDN: ZPMQZQ

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 37)
Language: 
Russian
Article type: 
Article
UDC: 
544.643
EDN: 
ZPMQZQ

Behavior of electrodeposited silicon film on glassy carbon during lithiation and delithiation

Autors: 
Leonova Anastasiya Maksimovna, Ural Federal University named after the first President of Russia B. N. Yeltsin
Leonova Nataliya Maksimovna, Ural Federal University named after the first President of Russia B. N. Yeltsin
Suzdal'tsev Andrei Viktorovich, Ural Federal University named after the first President of Russia B. N. Yeltsin
Abstract: 

Silicon is one of the promising anode materials for lithium-ion batteries with enhanced performance. However, the degradation of silicon during lithiation/delithiation is still the main problem that prevents it commercial use as electrodes. In this work the behavior of a silicon film of about 5–6 µm thick electrodeposited from LiCl-KCl-CsCl-K2SiF6 melt on glassy carbon was studied during its lithiation and delithiation, the film being a part of the anode half-cell of a lithium-ion battery. For this purpose, the methods of cycling in galvanostatic mode, electrochemical impedance, and scanning electron microscopy were used. The principal possibility of lithiation/delithiation of the film was shown and its energy characteristics during multiple cycling were determined. However, during 714 charge-discharge cycles with the current being 0.84 A/g the discharge capacity decreased from 723 to 58 mA·h/g. It was noted that the cause of degradation of the investigated sample was the detachment of the film from the glassy carbon substrate and its cracking.

Reference: 
  1. Savina A. A., Boev A. O., Orlova E. D., Morozov A. V., Abakumov A. M. Nickel as a key element in the future energy. Russian Chemical Reviews, 2023, vol. 92, article no. RCR5086. https://doi.org/10.59761/RCR5086
  2. Zhuravlev V. D., Shchekoldin S. I., Andrjushin S. E., Sherstobitova E. A., Nefedova K. V., Bushkova O. V. Electrochemical characteristics and phase composition of lithium manganese oxide spinel with excess lithium Li1+xMn2O4. Electrochemical Energetics, 2020, vol. 20, no. 3, pp. 157–170 (in Russian). https://doi.org/10.18500/1608-4039-2020-20-3-157-170
  3. Savvina A. A., Karaseva E. V., Mochalov S. E., Kolosnitsyn V. S. Effect of lithium perchlorate concentration on lithium cation transference number in sulpholane solutions. Electrochemical Energetics, 2024, vol. 24, no. 1, pp. 28–37 (in Russian). https://doi.org/10.18500/1608-4039-2024-24-1-28-37
  4. Li S. A., Ryzhikova E. V., Skundin A. M. The active materials ratio in electrodes of lithiumion batteries: Optimisation problems. Electrochemical Energetics, 2020, vol. 20, no. 2, pp. 68–72 (in Russian). https://doi.org/10.18500/1608-4039-2020-20-2-68-72
  5. Abramova E. N., Bobyleva Z. V., Drozhzhin O. A., Abakumov A. M., Antipov E. V.  Hard carbon as anode material for metal-ion batteries. Russian Chemical Reviews, 2024, vol. 93, article no. RCR5100. https://doi.org/10.59761/RCR5100
  6. Chemezov O. V., Isakov A. V., Apisarov A. P., Brezhestovsky M. S., Bushkova O. V., Batalov N. N., Zaikov Yu. P., Shashkin A. P. Electrolytic production of silicon nanofibers from the KCl-KF-K2SiF6-SiO2 melt for composite anodes of lithium-ion batteries. Electrochemical Energetics, 2013, vol. 13, no. 4, pp. 201–204 (in Russian).
  7. Korchun A. V., Evshchik E. Yu., Baskakov S. A., Bushkova O. V., Dobrovolsky Y. A. Influence of a binder on the electrochemical behaviour of Si/RGO composite as negative electrode material for Li-ion batteries. Chimica Techno Acta, 2020, vol. 7, no. 4, pp. 259–268. https://doi.org/10.15826/chimtech.2020.7.4.21
  8. Suzdaltsev A. V., Gevel T. A., Parasotchenko Yu. A., Pavlenko O. B. Brief review of the results of using electrodeposited silicon in energy conversion and storage devices. Rasplavy, 2023. no. 1, pp. 99–108 (in Russian). https://doi.org/10.31857/S0235010623010127
  9. Khan M., Yan S., Ali M., Mahmood F., Zheng Y., Li G., Liu J., Song X., Wang Y. Innovative solutions for high-performance silicon anodes in lithiumion batteries: Overcoming challenges and real-world applications. Nano-Micro Lett., 2024, vol. 16, no. 1, article no. 179. https://doi.org/10.1007/s40820-024-01388-3
  10. Andersen H. F., Lie Foss C. E., Voje J., Tronstad R., Mokkelbost T., Vullum P. E., Ulvestad A., Kirkengen M., Mæhlen J. P. Silicon-carbon composite anodes from industrial battery grade silicon. Scientific Reports, 2019, vol. 9, article no. 14814. https://doi.org/10.1038/s41598-019-51324-4
  11. Leonova N. M., Leonova A. M., Bashirov O. A., Lebedev A. S., Trofimov A. A., Suzdaltsev A. V. C/SiC-based anodes for lithiumion current sources. Electrochemical Energetics, 2023, vol. 23, no. 1, pp. 41–50 (in Russian). https://doi.org/10.18500/1608-4039-2023-23-1-41-50
  12. An W., Gao B., Mei Sh., Xiang B., Fu J., Wang L., Zhang Q., Chu P. K., Huo K. Scalable synthesis of ant-nest-like bulk porous silicon for highperformance lithium-ion battery anodes. Nature Communications, 2019, vol. 10, article no. 1447. https://doi.org/10.1038/s41467-019-09510-5
  13. Fan Z., Wang Y., Zheng S., Xu K., Wu J., Chen S., Liang J., Shi A., Wang Zh. A submicron Si@C core-shell intertwined with carbon nanowires and graphene nanosheet as a high-performance anode material for lithium ion battery. Energy Storage Materials, 2021, vol. 39, pp. 1–10. https://doi.org/10.1016/j.ensm.2021.04.005
  14. Vivegnis S., Baudhuin L.-C., Delhalle J., Mekhalif Z., Renner F. U. Electrodeposition of silicon films from organic solvents on nanoporous copper substrates. Journal of Applied Electrochemistry, 2023, vol. 54, pp. 77–88. https://doi.org/10.1007/s10800-023-01940-w
  15. Salah M., Murphy P., Hall C., Francis C., Kerr R., Fabretto M. Pure silicon thin-film anodes for lithium-ion batteries: A review. J. Power Sources, 2019, vol. 414, pp. 48–67. https://doi.org/10.1016/j.jpowsour.2018.12.068
  16. Ilves V. G., Zuev M. B., Vasin A. A., Korusenko P. M., Sokovnin S. Yu., Ulitko M. V., Gerasimov A. S. Properties of an amorphous crystalline nanopowder Si–SiO2 produced by pulsed electron beam evaporation. Materials Chemistry and Physics, 2024, vol. 316, article no. 129026. https://doi.org/10.1016/j.matchemphys.2024.129026
  17. Dian J., Macek A., Niznansky D., Nemec I., Vrkoslav V., Chvojka T., Jelinek I. Sem and HTEM study of porous silicon-relationship between fabrication, morphology and optical properties. Applied Surface Science, 2004, vol. 238, pp. 169–174. https://doi.org/10.1016/j.apsusc.2004.05.218
  18. El Omari G., El Kindoussy Kh., Aqil M., Mouad Dahbi M., Alami J., Makha M. Advances in physical vapor deposited silicon/carbon based anode materials for Li-ion batteries. Heliyon, 2024, vol. 10, article no. e30431. https://doi.org/10.1016/j.heliyon.2024.e30431
  19. Jiang S., Zhang Y., Fan J., Yao J., Luo L., Zhou Zh., Dong P., Xiao W. In situ constructed MgO parclose-concerted fabrication of silicon/carbon hybrids via a high-efficiency and expedited electrochemical process in molten salt. Chemical Engineering Journal, 2024, vol. 484, article no. 149428. https://doi.org/10.1016/j.cej.2024.149428
  20. Link S., Dimitrova A., Krischok S., Ivanov S. Electrochemical deposition of silicon in organic electrolytes. In: Wandelt K., Busetti G., eds. Encyclopedia of Solid-Liquid Interfaces. Elsevier, 2024, pp. 446–461. https://doi.org/10.1016/B978-0-323-85669-0.00005-2
  21. Zou X., Ji L., Ge J., Sadoway D. R., Yu E. T., Bard A. J. Electrodeposition of crystalline silicon films from silicon dioxide for low-cost photovoltaic applications. Nature Communications, 2019, vol. 10, article no. 5772. https://doi.org/10.1038/s41467-019-13065-m
  22. Yasuda K., Nohira T. Electrochemical production of silicon. High Temperature Materials and Processes, 2022, vol. 41, pp. 247–278. https://doi.org/10.1515/htmp-2022-0033
  23. Ustinova Y., Pavlenko O., Zhuk S., Suzdaltsev A., Zaikov Yu. Electrodeposition of silicon from the low-melting LiCl-KCl-CsCl-K2SiF6 electrolytes. Journal of the Electrochemical Society, 2022, vol. 169, article no. 032506. https://doi.org/10.1149/1945-7111/ac5a1c
  24. Pavlenko O. B., Suzdaltsev A. V., Parasotchenko Yu. A., Zaikov Yu. P. Electrochemical synthesis and characterization of silicon thin films for energy conversion. Silicon, 2023, vol. 15, pp. 7765–7770. https://doi.org/10.1007/s12633-023-02615-z
  25. Pan K., Zou F., Canova M., Zhu Y., Kim J.-H. Systematic electrochemical characterizations of Si and SiO anodes for high-capacity Li-ion batteries. J. Power Sources, 2019, vol. 413, pp. 20–28. https://doi.org/10.1016/j.jpowsour.2018.12.010
  26. Sethuraman V. A., Srinivasan V., Newman J. Analysis of electrochemical lithiation and delithiation kinetics in silicon. Journal of the Electrochemical Society, 2013, vol. 160, pp. A394–A403. https://doi.org/10.1149/2.008303jes
  27. Kim J. S., Kim D. W., Jung H. T., Choi J. W. Controlled lithium dendrite growth by a synergistic effect of multilayered graphene coating and an electrolyte additive. Chemistry of Materials, 2015, vol. 27, pp. 2780–2787. https://doi.org/10.1021/cm503447u
  28.  
Received: 
18.07.2024
Accepted: 
22.08.2024
Published: 
30.09.2024