Cd|KOH|NiOOH

Zn|NH4CI|MnO2

Li|LiClO4|MnO2

Pb|H2SO4|PbO2

H2|KOH|O2

degradation

Degradation Mechanism of Electrodes from Sodium Titanate at Cycling

Degradation of Na2Ti3O7-based electrodes is studied by galvanostatic as well as electrochemical impedance spectroscopy methods. The rate of degradation was shown to decrease from cycle to cycle as the cycling progresses and also as the cycling current increases. It was concluded that the main reason of degradation is the gradual an electrolyte reduction with the formation of insoluble products (SEI).

Research of degradation mechanism of the membrane-electrode assemlies of solid polymer water electrolyzer

Concerning performance, safety, reliability and durability issues, the membrane-electrode assembly (MEA) is probably the weakest cell component. Most performance losses and most accidents occurring during PEM water electrolysis are usually due to the MEA. The purpose of this article is to report on specific degradation mechanisms of the MEA and electrolyser in whole.

Study of thin-film electrodes of the system Si–Al–O for lithium-ion battery

Structure of thin-film electrodes manufactured by layer-by-layer magnetron sputtering of Si and Al in the environment with small oxygen additives has been studied. Charge-discharge behavior of these electrodes was studied as well. It is shown that such electrodes are able to stable cycling with marginal irreversible capacity.

Silicon electrodes degradation at cycling

On basis of analysis of literature data as well as of own experimental results we suggest some regularity for degradation of silicon electrodes upon cycling. It was shown that an electrode capacity Q at n-th cycle can be calculated from equation Q = Q0 exp(kn+βn2/2), where Q0 is initial capacity value, k и β are empiric constants.