Degradation Mechanism of Electrodes from Sodium Titanate at Cycling

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).

Degradation of Na2Ti3O7-based electrodes is studied by galvanostatic as well as electrochemical impedance spectroscopy methods. The rate of degradation was shown to decrease from cycle to cycle as the cycling progresses and also as the cycling current increases. It was concluded that the main reason of degradation is the gradual an electrolyte reduction with the formation of insoluble products (SEI).


1. Skundin A. M., Kulova T. L., Yaroslavtsev A. B. Sodium-ion Batteries (a Review). Russian Journal of Electrochemistry, 2018, vol. 54, pp. 113–152.

2. Senguttuvan P., Rousse G., Seznec V., Tarascon J.-M. Palacı́n M. R. Na2Ti3O7 : Lowest voltage ever reported oxide insertion electrode for sodium ion batteries. Chem. Mater., 2011, vol. 23, pp. 4109–4111.

3. Zhao L., Qi L., Wang H. Sodium titanate nanotube/graphite, an electric energy storage device using Na+-based organic electrolytes. J. Power Sources, 2013, vol. 242, pp. 597–603.

4. Rudola A., Saravanan K., Masona C. W., Balaya P. Na2Ti3O7 : an intercalation based anode for sodium-ion battery applications. J. Mater. Chem. A., 2013, vol. 1, pp. 2653–2662.

5. Pan H., Lu X., Yu X., Hu Y.-S., Li H., Yang X.-Q., Chen L. Sodium storage and transport properties in layered Na2Ti3O7 for room-temperature sodium-ion batteries. Adv. Energy Mater., 2013, vol. 3, pp. 1186–1194.

6. Wang W., Yu C., Liu Y., Hou J., Zhu H., Jiao S. Single crystalline Na2Ti3O7 rods as an anode material for sodium-ion batteries. RSC Adv., 2013, vol. 3, pp. 1041–1044.

7. Zou W., Li J., Deng Q., Xue J., Dai X., Zhou A., Li J. Microspherical Na2Ti3O7 prepared by spray-drying method as anode material for sodium-ion battery. Solid State Ionics, 2014, vol. 262, pp. 192–196.

8. Xu J., Ma C., Balasubramanian M., Meng Y. S. Understanding Na2Ti3O7 as an ultra-low voltage anode material for a Na-ion battery. Chem. Commun., 2014, vol. 50, pp. 12564–12567.

9. Zhang Y., Guo L., Yang S. Three-dimensional spider-web architecture assembled from Na2Ti3O7 nanotubes as a high performance anode for a sodium-ion battery. Chem. Commun., 2014, vol. 50, pp. 14029–14032.

10. Rudola A., Sharma N., Balaya P. Introducing a 0.2V sodium-ion battery anode : The Na2Ti3O7 to Na3 − xTi3O7 pathway. Electrochem. Commun., 2015, vol. 61, pp. 10–13.

11. Xie M., Wang K., Chen R. Li Li, Wu F. A facile route to synthesize sheet-like Na2Ti3O7 with improved sodium storage properties. Chem. Res. in Chinese Univs., 2015, vol. 31, pp. 443–446.

12. Wang X., Li Y., Gao Y., Wang Z., Chen L. Additive-free sodium titanate nanotube array as advanced electrode for sodium ion batteries. Nano Energy, 2015, vol. 13, pp. 687–692.

13. Nava-Avenda no J., Morales-Garcı́a A., Ponrouch A., Rousse G., Frontera C., Senguttuvan P., Tarascon J.-M., Arroyo-de Dompablo M. E., Palacı́n M. R. Taking steps forward in understanding the electrochemical behavior of Na2Ti3O7. J. Mater. Chem. A, 2015, vol. 3, no. 44, pp. 22280–22286.

14. Yan Z., Liu L., Shu H., Yang X., Wang H., Tan J., Zhou Q., Huang Z., Wang X. A tightly integrated sodium titanate-carbon composite as an anode material for rechargeable sodium ion batteries. J. Power Sources. 2015, vol. 274, pp. 8–14.

15. Zarrabeitia M. Castillo-Martı́neza E., Del Amo J. M. L., Eguı́a-Barrio A., Mu noz-Márquez M. Á., Rojo T., Casas-Cabanas M. Identification of the critical synthesis parameters for enhanced cycling stability of Na-ion anode material Na2Ti3O7. Acta Materialia, 2016, vol. 104, pp. 125–130.

16. Mukherjee S., Bates A., Schuppert N., Son B., Kim J. G., Choi J. S., Choi M. J., Lee D.-H., Kwon O., Jasinski J., Park S. A study of a novel Na ion battery and its anodic degradation using sodium rich prussian blue cathode coupled with different titanium based oxide anodes. J. Power Sources, 2015, vol. 286, pp. 276–289.

17. Muñoz-Márquez M. A., Zarrabeitia M., Castillo-Martı́nez E., Eguı́a-Barrio A., Rojo T., Casas-Cabanas M. Composition and evolution of the solid-electrolyte interphase in Na2Ti3O7 electrodes for Na-ion batteries : XPS and auger parameter analysis. ACS Applied Materials & Interfaces, 2015, vol. 7, pp. 7801–7808.

18. Liu J., Banis M. N., Xiao B., Sun Q., Lushington A., Li R., Guo J., Sham T.-K., Sun X. Atomically precise growth of sodium titanates as anode materials for high-rate and ultralong cycle-life sodium-ion batteries. J. Mater. Chem. A, 2015, vol. 3, pp. 24281–24288.

19. Xu Y., Bauer D., Lübke M., Ashton T. E., Zong Y., Darr J. A. High-power sodium titanate anodes; a comparison of lithium vs sodium-ion batteries. J. Power Sources, 2018, vol. 408, pp. 28–37.

20. Tran N. Q., Le T. A., Lee H. Ultralight and flexible sodium titanate nanowire aerogel with superior sodium storage. J. Mater. Chem. A, 2018, vol. 6, pp. 17495–17502.

21. Chen S., Pang Y., Liang J., Ding S. Red blood cell-like carbon hollow sphere anchored ultrathin Na2Ti3O7 nanosheets as long cyclic and high rate-performance anodes for sodium-ion batteries. J. Mater. Chem. A, 2018, vol. 6, pp. 13164–13170.

22. Kulova T., Skundin A., Chekannikov A., Novikova S., Stenina I., Kudryashova Yu., Sinenko G. Study of sodium-ion battery based on sodium vanadium phosphate and sodium titanate at low temperatures. Intern. J. Electrochem. Sci., 2019, vol. 14, pp. 1451–1460.

23. Ivanishchev A., Churikov A., Ivanishcheva I., Ushakov A. Lithium diffusion in Li3V2(PO4)3-based electrodes : a joint analysis of electrochemical impedance, cyclic voltammetry, pulse chronoamperometry, and chronopotentiometry data. Ionics, 2016, vol. 22, pp. 483–501.

Full Text (PDF):
(downloads: 118)