ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Berezhnaya A. G., Chernyavina V. V., Gavrikova S. O. Влияние состава электролита на удельную ёмкость устройств с углеродной тканью Бусофит Т-040. Electrochemical Energetics, 2020, vol. 20, iss. 1, pp. 33-?. DOI: 10.18500/1608-4039-2020-20-1-33-44, EDN: LKVQLE

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 102)
Language: 
Russian
Heading: 
Article type: 
Article
EDN: 
LKVQLE

Влияние состава электролита на удельную ёмкость устройств с углеродной тканью Бусофит Т-040

Autors: 
Berezhnaya Aleksandra Grigor'evna, Southern Federal University
Chernyavina Valentina Vladimirovna, Southern Federal University
Gavrikova Svetlana Olegovna, Southern Federal University
Abstract: 

The energy characteristics of prototypes of supercapacitors with carbon fabric electrodes Busofit T-040 were studied depending on the concentration of aqueous solutions of sulfate, sodium iodide and their mixtures without and in the presence of a corrosion inhibitor of the nickel collector – benzotriazole. It was found that the specific capacity of devices based on sodium iodide is almost two times higher than in the case using sulfate media. Close values of specific capacitance were obtained in devices based on mixed electrolytes. At a charge-discharge current of 100 mA and a working voltage window of 1.2 V in 1 M solutions of iodide, sulfate and a sulfate/iodide mixture of 1 : 3 and 1 : 1, the specific discharge capacity values of the device were 40, 22, 44 and 37 F/g (160, 88, 172 and 148 F/g for the electrode), respectively. Benzotriazole either does not change or slightly reduces the specific capacity of the device.

Reference: 

1. Сonway B. E. Electrochemical supercapacitors – scientific fundamentals and technological applications. New York, Kluwer Academic/Plenum Press, 1999. 698 p.

2. Pollak E., Levy N., Eliad L., Salitra G., Soffer A., Aurbach D. Review on engineering and characterization of activated carbon electrodes for electrochemical double layer capacitors and separation processes. Israel Journal of Chemistry, 2008, vol. 48, no. 3–4, pp. 287–303. DOI: https://doi.org/10.1560/IJC.48.3-4.287

3. Zhou C., Liu J. Carbon nanotube network film directly grown on carbon cloth for high-performance solid-state flexible supercapacitors. Nanotechnology, 2013, vol. 25, no. 3, 035402. DOI: https://doi.org/10.1088/0957-4484/25/3/035402

4. Kuznetsov Y. I., Andreeva N. P., Agafonkina M. O. Adsorption and protecting properties of 1,2,3-benzotriazole on MNZh 5-1 alloy in neutral solutions. Russian Journal of Electrochemistry, 2014, vol. 50. no. 10, pp. 989–993 (in Russian). DOI: https://doi.org/10.7868/S0424857014100041

5. Trabanelli Dzh., Frin’yani A., Montichelli Ch., Zukki F. Alkyl-substituted benzotriazoles as inhibitors of iron and copper corrosion. Korroziya : materialy, zashchita [Corrosion : materials, protection], 2015, no. 5, pp. 29–34 (in Russian).

6. Chae J., Chen G. 1.9 V aqueous carbon-carbon supercapacitors with unequal electrode capacitances. Electrochim. Acta, 2012, vol. 86, pp. 248–254. DOI: https://doi.org/10.1016/j.electacta.2012.07.033

7. Abbas Q., Babuchowska P., Frackowiak E., Beguin F. Substainable AC / AC hybrid electrochemical capacitors in aqueous electrolyte approaching the performance of organic systems. J. Power Sources, 2016, vol. 326. pp. 652–659. DOI: https://doi.org/10.1016/j.jpowsour.2016.03.094

Received: 
18.02.2020
Accepted: 
26.02.2019
Published: 
31.03.2020