The Polymer Binders for the Electrodes of Lithium Batteries. Part 2. Synthetic and Natural Polymers

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).

The second part of the review describes the prospects of using alternative polymer binders for composite electrodes of lithium electrochemical systems. Possible options having been taken into account, the most popular commercially-available synthetic polymers with functional group (the ones forming aqueous solutions or dispersions predominantly) and water-soluble polymers of natural origin are considered. The versatility of such materials is their distinctive feature. The availability of salt forms for natural and synthetic polymers, many of which are polyelectrolytes, makes it possible to significantly affect the ion transfer in the composite electrode mass, reducing the polarization of the electrodes and improving the power characteristics of batteries. The ability to form “artificial SEI” and / or form a three-dimensional network with self-healing cross-links between macromolecules allows long-term safe cycling, the latter being especially important for active materials with very large volume changes during lithium intercalation / deintercalation (e.g. silicon).


1. Chen H., Ling M., Hencz L., Ling H. Y., Li G., Lin Z., Liu G., Zhang S. Exploring chemical, mechanical, and electrical functionalities of binders for advanced energy-storage devices. Chem. Rev., 2018, vol. 118, no. 18, pp. 8936–8982. DOI:

2. Lestriez B. Functions of polymers in composite electrodes of lithium ion batteries. C. R. Chim., 2010, vol. 13, no. 11, pp. 1341–1350. DOI:

3. Ma Y., Ma J., Cui G. Small things make big deal  : Powerful binders of lithium batteries and post-lithium batteries. Energy Storage Mater., 2019, vol. 20, pp. 146–175. DOI:

4. Prosini P. P., Carewska M., Cento C., Masci A. A. Poly vinyl acetate used as a binder for the fabrication of a LiFePO4-based composite cathode for lithium-ion batteries. Electrochim. Acta, 2014, vol. 125, pp. 129–135. DOI:

5. Prosini P. P., Carewska M., Masci A. A high voltage cathode prepared by using polyvinyl acetate as a binder. Solid State Ionics, 2015, vol. 274, pp. 88–93. DOI:

6. Prosini P.P, Di Carli M., Della Seta L., Carewska M., Nerini I. F. Ethylene vinyl acetate-based binder a promising material to produce high power and high energy electrodes with a prolonged cycle life. Solid State Ionics, 2017, vol. 301, pp. 15–22. DOI:

7. Kosolapova S. O., Junusova M. M., Abutalipova L. N. On the use of ethylene vinyl acetate in the production of special shoes. Vestnik Kazanskogo tehnologicheskogo universiteta [Bulletin of Kazan Technological University], 2013, no. 1, pp. 122–123 (in Russian).

8. Phanikumar V. V. N., Rikka V. R., Das B., Gopalan R., Rao B. A., Prakash R. Investigation on polyvinyl alcohol and sodium alginate as aqueous binders for lithium-titanium oxide anode in lithium-ion batteries. Ionics, 2019, vol. 25, no. 6, pp. 2549–2561. DOI:

9. Liao J., Liu Z., Liu X., Ye Z. Water-soluble linear poly(ethyleneimine) as a superior bifunctional binder for lithium-sulfur batteries of improved cell performance. J. Phys. Chem. C, 2018, vol. 122, no. 45, pp. 25917–25929. DOI:

10. Liu Z., Han S., Xu C., Luo Y., Peng N., Qin C., Zhou M., Wang W., Chen L., Okada S. In situ crosslinked PVA-PEI polymer binder for long-cycle silicon anodes in Li-ion batteries. RSC Adv., 2016, vol. 6, no. 72, pp. 68371–68378. DOI:

11. Tager А. А. Fizikokhimiya polimerov [Physical Chemistry of Polymers]. Moscow, Mir Publ., 1978. 544 p. (in Russian).

12. Gong L., Nguyen M. H. T., Oh E.-S. High polar polyacrylonitrile as a potential binder for negative electrodes in lithium ion batteries. Electrochem. Commun., 2013, vol. 29, pp. 45–47. DOI:

13. Tsao C.-H., Hsu C.-H., Kuo P.-L. Ionic conducting and surfacea active binder of Poly(ethylene oxide)-block-poly(acrylonitrile) for high power lithium-ion battery. Electrochim. Acta, 2016, vol. 196, pp. 41–47. DOI:

14. Luo L., Xu Y., Zhang H., Han X., Dong H., Xu X., Chen C., Zhang Y., Lin J. Comprehensive understanding of high polar polyacrylonitrile as an effective binder for Li-ion battery nano-Si anodes. ACS Appl. Mater. Interfaces, 2016, vol. 8, no. 12, pp. 8154–8161. DOI:

15. Lee S., Kim E. Y., Lee H., Oh E. S. Effects of polymeric binders on electrochemical performances of spinel lithium manganese oxide cathodes in lithium ion batteries. J. Power Sources, 2014, vol. 269, pp. 418–423. DOI:

16. Nguyen M. H. T., Oh E.-S. Application of a new acrylonitrile/butylacrylate water-based binder for negative electrodes of lithium-ion batteries. Electrochem. Commun., 2013, vol. 35, pp. 45–48. DOI:

17. Gray F. M. Solid Polymer Electrolytes : Fundamentals and Technological Applications. New York, VCH Publishers, 1991. 245 р.

18. Tanaka S., Narutomi T., Suzuki S., Nakao A., Oij H., Yabuuchi N. Acrylonitrile-grafted poly(vinyl alcohol) copolymer as effective binder for high-voltage spinel positive electrode. J. Power Sources, 2017, vol. 358, pp. 121–127.DOI:

19. Zhang S. S., Xu K., Jow T. R. Poly (acrylonitrile-methyl methacrylate) as a non-fluorinated binder for the graphite anode of Li-ion batteries. J. Appl. Electrochem., 2003, vol. 33, no. 11, pp. 1099–1101. DOI:

20. Verdier N., Khakani S., Lepage D., Prebe A., Ayme-Perrot D., Dolle M., Rochefort D. Polyacrylonitrile-based rubber (HNBR) as a new potential elastomeric binder for lithi-um-ion battery electrodes. J. Power Sources, 2019, vol. 440, pp. 227111. DOI:

21. Ui K., Fujii D., Niwata Y., Karouji T., Shibata Y., Kadoma Y., Shimada K., Kumaga N. Analysis of solid electrolyte interface formation reaction and surface deposit of natural graphite negative electrode employing polyacrylic acid as a binder. J. Power Sources, 2014, vol. 247, pp. 981–990. DOI:

22. Komaba S., Yabuuchi N., Ozeki T., Okushi K., Yui H., Konno K., Katayama Y., Miura T. Functional binders for reversible lithium intercalation into graphite in propylene carbonate and ionic liquid media. J. Power Sources, 2010, vol. 195, pp. 6069–6074. DOI:

23. Mazouzi D., Karkar Z., Hernandez C. R., Manero P. J., Guyomard D., Roué L., Lestriez B. Critical roles of binders and formulation at multiscales of silicon-based composite electrodes. J. Power Sources, 2015, vol. 280, pp. 533–549. DOI:

24. Kasinathan R., Marinaro M., Axmann P., Wohlfahrt-Mehrens M. Influence of the molecular weight of poly-acrylic acid binder on performance of Si-alloy/graphite composite anodes for lithium-ion batteries. Energy Technol., 2018, vol. 6, no. 11, pp. 2256–2263. DOI:

25. Choi S. J., Yim T., Cho W., Mun J., Jo Y. N., Kim K. J., Jeong G., Kim T.-H., Kim Y.-J. Rosin-embedded poly(acrylic acid) binder for Silicon/Graphite negative electrode. ACS Sustain. Chem. Eng., 2016, vol. 4, no. 12, pp. 6362–6370. DOI:

26. Song J., Zhou M., Yi R., Xu T., Gordin M. L., Tang D., Yu Z., Regula M., Wang D. Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries. Adv. Func. Mater, 2014, vol. 24, no. 37, pp. 5904–5910. DOI:

27. Koo B., Kim H., Cho Y., Lee K. T., Choi N. S., Cho J. A Highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries. Ang. Chem. Int. Ed., 2012, vol. 51, no. 35, pp. 8762–8767. DOI:

28. Aoki S., Han Z.-J., Yamagiwa K., Yabuuchi N., Murase M., Okamoto K., Kiyosu T., Satoh M., Komaba S. Acrylic acid-based copolymers as functional binder for sili-con/graphite composite electrode in lithium-ion batteries. J. Electrochem. Soc., 2015, vol. 162, no. 12, pp. A2245–A2249. DOI:

29. Li J., Zhang G., Yang Y., Yao D., Lei Z., Li S., Deng Y., Wang C. Glycinamide modified polyacrylic acid as high-performance binder for silicon anodes in lithium-ion batteries. J. Power Sources, 2018, vol. 406, pp. 102–109. DOI:

30. Moretti A., Maroni F., Nobili F., Passerini S. V2O5 electrodes with extended cycling ability and improved rate performance using polyacrylic acid as binder. J. Power Sources, 2015, vol. 293, pp. 1068–1072. DOI:

31. Chong J., Xun S., Zheng H., Song X., Liu G., Ridgway P., Wang J. Q., Battaglia V. S. A comparative study of polyacrylic acid and poly (vinylidene difluoride) binders for spherical natural graphite/LiFePO4 electrodes and cells. J. Power Sources, 2011, vol. 196, no. 18, pp. 7707–7714. DOI:

32. Sun J., Ren X., Li Z., Tian W., Zheng Y., Wang L., Liang G. Effect of poly (acrylic acid)/poly (vinyl alcohol) blending binder on electrochemical performance for lithium iron phosphate cathodes. J. Alloys Compd., 2019, vol. 783, pp. 379–386. DOI:

33. Kraytsberg A., Ein-Eli Y. Higher, stronger, better… A review of 5 volt cathode materials for advanced lithium-ion batteries. Adv. Energy Mater., 2012, vol. 2, no. 8, pp. 922–939. DOI:

34. Pieczonka N. P. W., Borgel V., Ziv B., Leifer N., Dargel V., Aurbach D., Manthiram A. Lithium polyacrylate (LiPAA) as an advanced binder and a passivating agent for high-voltage Li-ion batteries. Adv. Energy Mater., 2015, vol. 5, no. 23, pp. 1501008–1501018. DOI:

35. Li J., Le D. B., Ferguson P. P., Dahn J. R. Lithium polyacrylate as a binder for tin–cobalt–carbon negative electrodes in lithium-ion batteries. Electrochim. Acta, 2010, vol. 55, no. 8, pp. 2991–2995. DOI:

36. Komaba S., Okushi K., Ozeki T., Yui H., Katayama Y., Miura T., Saito T., Groult H. Polyacrylate modifier for graphite anode of lithium-ion batteries. J. Electrochem. Solid-State Lett., 2009, vol. 12, no. 5, pp. A107–A110. DOI:

37. Komaba S., Yabuuchi N., Ozeki T., Han Z. J., Shimomura K., Yui H., Katayama Y., Miura T. Comparative study of sodium polyacrylate and poly (vinylidene fluoride) as binders for high capacity Si-graphite composite negative electrodes in Li-ion batteries. J. Phys. Chem. C, 2012, vol. 116, no. 1, pp.1380–1389. DOI:

38. Garsuch R. R., Le D. B., Garsuch A., Li J., Wang S., Farooq A., Dahn J. R. Studies of lithium-exchanged Nafion as an electrode binder for alloy negatives in lithium-ion batteries. J. Electrochem. Soc., 2008, vol. 155, no. 10, pp. A721–A724. DOI:

39. Xu J., Zhang Q., Cheng Y.-T. High capacity silicon electrodes with Nafion as binders for lithium-ion batteries. J. Electrochem. Soc., 2016, vol. 163, no. 3, pp. A401–A405. DOI:

40. Xu J., Zhang L., Wang Y., Chen T., Al-Shroofy M., Cheng Y.-T. Unveiling the critical role of polymeric binders for silicon negative electrodes in lithium-ion full cells. ACS Appl. Mater. Interfaces, 2017, vol. 9, no. 4, pp. 3562–3569. DOI:

41. Shen C., Ge M., Zhang A., Fang X., Liu Y., Rong J., Zhou C. Silicon(lithiated)–sulfur full cells with porous silicon anode shielded by Nafion against polysulfides to achieve high capacity and energy density. Nano Energy, 2016, vol. 19, pp. 68–77. DOI:

42. Li G., Cai W., Liu B., Li Z. A multi functional binder with lithium ion conductive polymer and polysulfide absorbents to improve cycleability of lithium – sulfur batteries. J. Power Sources, 2015, vol. 294, pp. 187–192. DOI:

43. Chiu K.-F., Su S. H., Leu H.-J., Chen Y. S. Application of lithiated perfluorosulfonate ionomer binders to enhance high rate capability in LiMn2O4 cathodes for lithium ion batteries. Electrochim. Acta, 2014, vol. 117, pp. 134–138. DOI:

44. Oh J.-M., Geiculescu O., DesMarteau D., Creager S. Ionomer binders can improve discharge rate capability in lithium-ion battery cathodes. J. Electrochem. Soc., 2011, vol. 158, no. 2, pp. A207–A213. DOI:

45. Wei Z., Xue L., Nie F., Sheng J., Shi Q., Zhao X. Study of sulfonated polyether ether ketone with pendant lithiated fluorinated sulfonic groups as ion conductive binder in lithium-ion batteries. J. Power Sources, 2014, vol. 256, pp. 28–31. DOI:

46. Shi Q., Xue L., Wei Z., Liu F., Du X., DesMarteau D. D. Improvement in LiFePO4-Li battery performance via poly (perfluoroalkylsulfonyl) imide (PFSI) based ionene composite binder. J. Mater. Chem. A, 2013, vol. 1, no. 47, pp. 15016–15021. DOI:

47. Kargin V. A., ed. Entsiklopedija polymerov [Encyclopedia of Polymers : in 3 vols]. Moscow, Sovetskaya Entsiklopedija Publ., 1972, vol. 1. 1224 p. (in Russian).

48. Rogovin Z. A. Himija celljulozy [The chemistry of cellulose]. Moscow, Himija Publ., 1972. 519 p. (in Russian).

49. Drofenik J., Gaberscek M., Dominko R., Poulsen F. W., Mogensen M., Pejovnik S., Jamnik J. Cellulose as a binding material in graphitic anodes for Li ion batteries : a per-formance and degradation study. Electrochim. Acta, 2003, vol. 48, no. 7, pp. 883–889. DOI:

50. Choi N.-S., Ha S.-Y., Lee Y., Jang J. Y., Jeong M.-H., Shin W. C., Ue M. Recent progress on polymeric binders for silicon anodes in lithium-ion batteries. J. Electrochem. Sci. Technol., 2015, vol. 6, no. 2, pp. 35–49. DOI:

51. Li J., Lewis R. B., Dahn J. R. Sodium Carboxymethyl Cellulose : A Potential Binder for Si Negative Electrodes for Li-Ion Batteries. J. Electrochem. Solid State Lett., 2007, vol. 10, no. 2, pp. A17–A20. DOI:

52. Ding N., Xu J., Yao Y., Wegner G., Lieberwirth I., Chen C. Improvement of cyclability of Si as anode for Li-ion batteries. J. Power Sources, 2009, vol. 192, no. 2, pp. 644–651. DOI:

53. Lestriez B., Bahri S., Sandu I., Roue L., Guyomard D. On the binding mechanism of CMC in Si negative electrodes for Li-ion batteries. Electrochem. Commun., 2007, vol. 9, no. 12, pp. 2801–2806. DOI:

54. Bridel J. S., Azais T., Morcrette M., Tarascon J. M., Larcher D. Key parameters governing the reversibility of Si/Carbon/CMC electrodes for Li-ion batteries. Chem. Mat., 2010, vol. 22, no. 3, pp. 1229–1241. DOI:

55. Huang C., Yu L., He S., Gan L., Liu J., Gong Z., Long M. Influence of molecular structure of carboxymethyl cellulose on high performance silicon anode in lithium-ion batteries. Int. J. Electrochem. Sci., 2019, vol. 14, pp. 4799–4811. DOI:

56. Hochgatterer N. S., Schweiger M. R., Koller S., Raimann P. R., Wohrle T., Wurm C., Winter M. Silicon/graphite composite electrodes for high-capacity anodes : influence of binder chemistry on cycling stability. J. Electrochem. Solid-State Lett., 2008, vol. 11, no. 5, pp. A76–A80. DOI:

57. Mazouzi D., Lestriez B., Roué L., Guyomard D. Silicon composite electrode with high capacity and long cycle life. J. Electrochem. Solid-State Lett., 2009, vol. 12, no. 11, pp. A215–A218. DOI:

58. Delpuech N., Mazouzi D., Dupre N., Moreau P., Cerbelaud M., Bridel J. S., Badot J.-C., De Vito E., Guyomard D., Lestriez B., Humbert B. Critical role of silicon nanoparticles surface on lithium cell electrochemical performance analyzed by FTIR, Raman, EELS, XPS, NMR, and BDS spectroscopies. J. Phys. Chem. C, 2014, vol. 118, no. 31, pp. 17318–17331. DOI:

59. Bridel J. S., Azais T., Morcrette M., Tarascon J. M., Larcher D. In situ observation and long-term reactivity of Si/C/CMC composites electrodes for Li-ion batteries. J. Electrochem. Soc., 2011, vol. 158, no. 6, pp. A750–A759. DOI:

60. Key B., Bhattacharyya R., Morcrette M., Seznec V., Tarascon J. M., Grey C. P. Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries. J. Am. Chem. Soc., 2009, vol. 131, no. 26, pp. 9239–9249. DOI:

61. Menkin S., Golodnitsky D., Peled E. Artificial solid-electrolyte interphase (SEI) for improved cycleability and safety of lithium-ion cells for EV applications. Electrochem. Commun., 2009, vol. 11, no. 9, pp. 1789–1791. DOI:

62. You R., Han X., Zhang Z., Li L., Li C., Huang W., Wang J., Xu J., Chen S. An environmental friendly cross-linked polysaccharide binder for silicon anode in lithium-ion batteries, Ionics, 2019, vol. 25, no. 9, pp. 4109–4118. DOI:

63. Shin D., Park H., Paik U. Cross-linked poly(acrylic acid)-carboxymethyl cellulose and styrene-butadiene rubber as an ef?cient binder system and its physicochemical effects on a high energy density graphite anode for Li-ion batteries. Electrochem. Commun., 2017, vol. 77, pp.103–106. DOI:

64. Li J., Klopsch R., Nowak S., Kunze M., Winter M., Passerini S. Investigations on cellulose-based high voltage composite cathodes for lithiumion batteries. J. Power Sources, 2011, vol. 196, no. 18, pp. 7687–7691. DOI:

65. Kil K. C., Paik U. Lithium salt of carboxymethyl cellulose as an aqueous binder for thick graphite electrode in lithium ion batteries. Macromol. Res., 2015, vol. 23, no. 8, pp. 719–725. DOI:

66. Qiu L., Shao Z., Wang D., Wang W., Wang F., Wang J. Enhanced electrochemical properties of LiFePO4 (LFP) cathode using the carboxymethyl cellulose lithium (CMC–Li) as novel binder in lithium-ion battery. Carbohydr. Polym., 2014, vol. 111, no. 13, pp. 588–591. DOI:

67. Elnashar M., ed. Biotechnology of Biopolymers. Rijeka, InTech, 2011. 364 p.

68. Chen C., Lee S. H., Cho M., Kim J., Lee Y. Cross-Linked Chitosan as an Efficient Binder for Si Anode of Li-ion Batteries. ACS Appl. Mater. Interfaces, 2016, vol. 8, no. 4, pp. 2658–2665. DOI:

69. Pestov A. V., Jatluk Ju. G. Karboksialkilirovannye proizvodnye hitina i hitozana [Carboxyalkylated chitin and chitosan derivatives]. Ekaterinburg, UrO RAN Publ., 2007. 102 p. (in Russian).

70. Yue L., Zhang L., Zhong H. Carboxymethyl chitosan : A new water soluble binder for Si anode of Li-ion batteries. J. Power Sources, 2014, vol. 247, pp. 327–331. DOI:

71. Sun M., Zhong H., Jiao S., Shao H., Zhang L. Investigation on carboxymethyl chitosan as new water soluble binder for LiFePO4 cathode in Li-ion batteries. Electrochim. Acta, 2014, vol. 127, pp. 239–244. DOI:

72. Rajeev K.K, Kim E., Nam J., Lee S., Mun J., Kim T.-H. Chitosan-grafted-polyaniline copolymer as an electrically conductive and mechanically stable binder for high-performance Si anodes in Li-ion batteries. Electrochim. Acta, 2020, vol. 333, pp. 1–20. DOI:

73. Zhong H., He A., Lu J., Sun M., He J., Zhang L. Carboxymethyl chitosan/conducting polymer as water-soluble composite binder for LiFePO4 cathode in lithium ion batteries, J. Power Sources, 2016, vol. 336, pp. 107–114. DOI:

74. Kovalenko I., Zdyrko B., Magasinski A., Hertzberg B., Milicev Z., Burtovyy R., Luzinov I., Yushin G. A Major constituent of brown algae for use in high-capacity Li-ion batteries. Science, 2011, vol. 334, no. 6052, pp. 75–79. DOI:

75. Liu J., Zhang Q. Wu Z.-Y., Wu J.-H., Li J.-T., Huang L., Sun S.-G. A high-performance alginate hydrogel binder for the Si/C anode of a Li-ion battery. Chem. Commun., 2014, vol. 50, no. 48, pp. 6386–6389. DOI:

76. Wu Z.-H., Yang J.-Y., Yu B., Shi B.-M., Zhao C.-R., Yu Z.-L. Self-healing alginate–carboxymethyl chitosan porous scaffold as an effective binder for silicon anodes in lithium-ion batteries. Rare Metals, 2016, vol. 39, no. 9, pp. 832–839. DOI:

77. Ryou M.-H., Kim J., Lee I., Kim S., Jeong Y. K., Hong S., Ryu J. H., Kim T.-S., Park J.-K., Lee H., Choi J. W. Mussel-inspired adhesive binders for high-performance silicon nanoparticle anodes in Lithium-ion batteries. Adv. Mater., 2013, vol. 25, no. 11, pp. 1571–1576. DOI:

78. Bao W.-Z., Zhang Z., Gan Y.-Q., Wang X.-W., Lia J. Enhanced cyclability of sulfur cathodes in lithium-sulfur batteries with Na-alginate as a binder. J. Energy Chem., 2013, vol. 22, no. 5, pp. 790–794. DOI:

79. Zhu S., Yu J., Yan X., Zhao E., Wang Y., Sun D., Jin Y., Kanamura K. Enhanced electrochemical performance from cross-linked polymeric network as binder for Li–S battery cathodes. J. Appl. Electrochem., 2016, vol. 46, no. 7, pp. 725–733. DOI:

80. Bigoni F., De Giorgio F., Soavi F., Arbizzani C. Sodium Alginate : A water-processable binder in high-voltage cathode formulations. J. Electrochem. Soc., 2016, vol. 164, no. 1, pp. A6171–A6177. DOI:

81. Bigoni F., De Giorgio F., Soavi F., Arbizzani C. New formulations of high-voltage cathodes for Li-ion batteries with water-processable binders. ECS Trans., 2016, vol. 73, no. 1, pp. 249–257. DOI:

82. Liu J., Zhang Q., Zhang T., Li J.-T., Huang L., Sun S.-G. A robust ion-conductive bi-opolymer as a binder for Si anodes of Lithium-ion batteries. Adv. Func. Mater., 2015, vol. 25, no. 23, pp. 3599–3605. DOI:

83. Carvalho D. V., Loeffler N., Hekmatfar M., Moretti A., Kim G.-T., Passerini S. Evaluation of guar gum-based biopolymers as binders for lithium-ion batteries electrodes. Electrochim. Acta, 2018, vol. 265, pp. 89–97. DOI:

84. Zhang T., Li J.-T., Liu J., Deng Y.-P., Wu Z.-G., Yin Z.-W., Guo D., Huang L., Sun S.-G. Suppressing the voltage-fading of layered lithium-rich cathode materials via an aqueous binder for Li-ion batteries. Chem. Commun., 2016, vol. 52, no. 25, pp. 4683–4686. DOI:

85. Courtel F. M., Niketic S., Duguay D., Abu-Lebdeh Y., Davidson I. J. Water-soluble binders for MCMB carbon anodes for lithium-ion batteries. J. Power Sources, 2011, vol. 196, no. 4, pp. 2128–2134. DOI:

86. Ling M., Xu Y., Zhao H., Gu X., Qiu J., Li S., Wu M., Song X., Yan C., Liu G. Dual-functional gum arabic binder for silicon anodes in lithium ion batteries. Nano Energy, 2015, vol. 12, pp. 178–185. 10.1016/j.nanoen.2014.12.011.

87. Ling M., Zhao H., Xiaoc X., Shi F., Wu M., Qiu J., Li S., Song X., Liu G., Zhang S. Low cost and environmentally benign crack-blocking structures for long life and high power Si electrodes in lithium ion batteries. J. Mater. Chem. A, 2015, vol. 3, no. 5, pp. 2036–2042. DOI:

88. Chou S.-L., Pan Y., Wang J. Z., Liu H. K., Dou S. X. Small things make a big difference : binder effects on the performance of Li and Na batteries. Phys. Chem. Chem. Phys. 2014, vol. 16, no. 38, pp. 20347–20359. DOI:

89. Kamiyama Y., Israelachvili J. Effect of pH and salt on the adsorption and interactions of an amphoteric polyelectrolyte. Macromolecules, 1992, vol. 25, no. 19, pp. 5081–5088. DOI:

90. Montoro L. A., Rosolen J. M. Gelatin/DMSO : a new approach to enhancing the performance of a pyrite electrode in a lithium battery. Solid-State Ionics, 2003, vol. 159, no. 3–4, pp. 233–240. DOI:

91. Gaberscek M., Bele M., Drofenik J., Dominko R., Pejovnik S. Improved Carbon anode for lithium batteries pretreatment of carbon particles in a polyelectrolyte solution. Electrochem. Solid-State Lett., 2000, vol. 3, no. 4, pp. 171–173. DOI:

92. Dominko R., Gaberscek M., Drofenik J., Bele M., Pejovnik S. A novel coating technology for preparation of cathodes in Li-ion batteries. Electrochem. Solid-State Lett., 2001, vol. 4, no. 11, pp. A187–A190. DOI:

93. Dominko R., Gaberscek M., Drofenik J., Bele M., Pejovnik S., Jamnik J. The role of carbon black distribution in cathodes for Li ion batteries. J. Power Sources, 2003, vol. 119, pp. 770–773. DOI:

94. Wang Y., Huang Y., Wang W., Huang C., Yu Z., Zhang H., Sun J., Wang A., Yuan K. Structural change of the porous sulfur cathode using gelatin as a binder during discharge and charge. Electrochim. Acta, 2009, vol. 54, no. 16, pp. 4062–4066. DOI:

95. Sun J., Huang Y., Wang W., Yu Z., Wang A., Yuan K. Application of gelatin as a binder for the sulfur cathode in lithium–sulfur batteries. Electrochim. Acta, 2008, vol. 53, no. 24, pp. 7084–7088. DOI:

96. Sun J., Huang Y., Wang W., Yu Z., Wang A., Yuan K. Preparation and electrochemical characterization of the porous sulfur cathode using a gelatin binder. Electrochem. Commun., 2008, vol. 10, no. 6, pp. 930–933. DOI:

97. Zhang W., Huang Y., Wang W., Huang C., Wang Y., Yu Z., Zhang H. Influence of pH of gelatin solution on cycle performance of the sulfur cathode. J. Electrochem. Soc., 2010, vol. 157, no. 4, pp. A443–А446. DOI:

98. Jiang S., Gao M., Huang Y., Wang W., Zhang H., Yu Z., Wang A., Yuan K. Enhanced performance of the sulfur cathode with L-cysteine-modified gelatin binder. J. Adhes. Sci. Technol., 2013, vol. 27, no. 9, pp. 1006–1011. DOI:

Full Text (PDF):
(downloads: 70)