ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Istomina A. S., Bushkova O. V. The Polymer Binders for the Electrodes of Lithium Batteries. Part 2. Synthetic and Natural Polymers. Electrochemical Energetics, 2020, vol. 20, iss. 4, pp. 175-?. DOI: 10.18500/1608-4039-2020-20-4-175-205, EDN: ICQJOJ

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 147)
Language: 
Russian
Heading: 
Article type: 
Article
EDN: 
ICQJOJ

The Polymer Binders for the Electrodes of Lithium Batteries. Part 2. Synthetic and Natural Polymers

Autors: 
Istomina Aigul Salavatovna, Institute of Solid State Chemistry
Bushkova Ol'ga Viktorovna, Institute of Solid State Chemistry
Abstract: 

The second part of the review describes the prospects of using alternative polymer binders for composite electrodes of lithium electrochemical systems. Possible options having been taken into account, the most popular commercially-available synthetic polymers with functional group (the ones forming aqueous solutions or dispersions predominantly) and water-soluble polymers of natural origin are considered. The versatility of such materials is their distinctive feature. The availability of salt forms for natural and synthetic polymers, many of which are polyelectrolytes, makes it possible to significantly affect the ion transfer in the composite electrode mass, reducing the polarization of the electrodes and improving the power characteristics of batteries. The ability to form “artificial SEI” and / or form a three-dimensional network with self-healing cross-links between macromolecules allows long-term safe cycling, the latter being especially important for active materials with very large volume changes during lithium intercalation / deintercalation (e.g. silicon).

Reference: 

1. Chen H., Ling M., Hencz L., Ling H. Y., Li G., Lin Z., Liu G., Zhang S. Exploring chemical, mechanical, and electrical functionalities of binders for advanced energy-storage devices. Chem. Rev., 2018, vol. 118, no. 18, pp. 8936–8982. DOI: https://www.doi.org/10.1021/acs.chemrev.8b00241

2. Lestriez B. Functions of polymers in composite electrodes of lithium ion batteries. C. R. Chim., 2010, vol. 13, no. 11, pp. 1341–1350. DOI: https://www.doi.org/10.1016/j.crci.2010.01.018

3. Ma Y., Ma J., Cui G. Small things make big deal  : Powerful binders of lithium batteries and post-lithium batteries. Energy Storage Mater., 2019, vol. 20, pp. 146–175. DOI: https://www.doi.org/10.1016/j.ensm.2018.11.013

4. Prosini P. P., Carewska M., Cento C., Masci A. A. Poly vinyl acetate used as a binder for the fabrication of a LiFePO4-based composite cathode for lithium-ion batteries. Electrochim. Acta, 2014, vol. 125, pp. 129–135. DOI: https://www.doi.org/10.1016/j.electacta.2014.10.123

5. Prosini P. P., Carewska M., Masci A. A high voltage cathode prepared by using polyvinyl acetate as a binder. Solid State Ionics, 2015, vol. 274, pp. 88–93. DOI: https://www.doi.org/10.1016/j.ssi.2015.03.008

6. Prosini P.P, Di Carli M., Della Seta L., Carewska M., Nerini I. F. Ethylene vinyl acetate-based binder a promising material to produce high power and high energy electrodes with a prolonged cycle life. Solid State Ionics, 2017, vol. 301, pp. 15–22. DOI: https://www.doi.org/10.1016/j.ssi.2016.12.017

7. Kosolapova S. O., Junusova M. M., Abutalipova L. N. On the use of ethylene vinyl acetate in the production of special shoes. Vestnik Kazanskogo tehnologicheskogo universiteta [Bulletin of Kazan Technological University], 2013, no. 1, pp. 122–123 (in Russian).

8. Phanikumar V. V. N., Rikka V. R., Das B., Gopalan R., Rao B. A., Prakash R. Investigation on polyvinyl alcohol and sodium alginate as aqueous binders for lithium-titanium oxide anode in lithium-ion batteries. Ionics, 2019, vol. 25, no. 6, pp. 2549–2561. DOI: https://www.doi.org/10.1007/s11581-018-2751-8

9. Liao J., Liu Z., Liu X., Ye Z. Water-soluble linear poly(ethyleneimine) as a superior bifunctional binder for lithium-sulfur batteries of improved cell performance. J. Phys. Chem. C, 2018, vol. 122, no. 45, pp. 25917–25929. DOI: https://www.doi.org/10.1021/acs.jpcc.8b09378

10. Liu Z., Han S., Xu C., Luo Y., Peng N., Qin C., Zhou M., Wang W., Chen L., Okada S. In situ crosslinked PVA-PEI polymer binder for long-cycle silicon anodes in Li-ion batteries. RSC Adv., 2016, vol. 6, no. 72, pp. 68371–68378. DOI: https://www.doi.org/10.1039/C6RA12232A

11. Tager А. А. Fizikokhimiya polimerov [Physical Chemistry of Polymers]. Moscow, Mir Publ., 1978. 544 p. (in Russian).

12. Gong L., Nguyen M. H. T., Oh E.-S. High polar polyacrylonitrile as a potential binder for negative electrodes in lithium ion batteries. Electrochem. Commun., 2013, vol. 29, pp. 45–47. DOI: https://www.doi.org/10.1016/j.elecom.2013.01.010

13. Tsao C.-H., Hsu C.-H., Kuo P.-L. Ionic conducting and surfacea active binder of Poly(ethylene oxide)-block-poly(acrylonitrile) for high power lithium-ion battery. Electrochim. Acta, 2016, vol. 196, pp. 41–47. DOI: https://www.doi.org/10.1016/j.electacta.2016.02.154

14. Luo L., Xu Y., Zhang H., Han X., Dong H., Xu X., Chen C., Zhang Y., Lin J. Comprehensive understanding of high polar polyacrylonitrile as an effective binder for Li-ion battery nano-Si anodes. ACS Appl. Mater. Interfaces, 2016, vol. 8, no. 12, pp. 8154–8161. DOI: https://www.doi.org/10.1021/acsami.6b03046

15. Lee S., Kim E. Y., Lee H., Oh E. S. Effects of polymeric binders on electrochemical performances of spinel lithium manganese oxide cathodes in lithium ion batteries. J. Power Sources, 2014, vol. 269, pp. 418–423. DOI: https://www.doi.org/10.1016/j.jpowsour.2014.06.167

16. Nguyen M. H. T., Oh E.-S. Application of a new acrylonitrile/butylacrylate water-based binder for negative electrodes of lithium-ion batteries. Electrochem. Commun., 2013, vol. 35, pp. 45–48. DOI: https://www.doi.org/10.1016/j.elecom.2013.07.042

17. Gray F. M. Solid Polymer Electrolytes : Fundamentals and Technological Applications. New York, VCH Publishers, 1991. 245 р.

18. Tanaka S., Narutomi T., Suzuki S., Nakao A., Oij H., Yabuuchi N. Acrylonitrile-grafted poly(vinyl alcohol) copolymer as effective binder for high-voltage spinel positive electrode. J. Power Sources, 2017, vol. 358, pp. 121–127.DOI: https://www.doi.org/10.1016/j.jpowsour.2017.05.032

19. Zhang S. S., Xu K., Jow T. R. Poly (acrylonitrile-methyl methacrylate) as a non-fluorinated binder for the graphite anode of Li-ion batteries. J. Appl. Electrochem., 2003, vol. 33, no. 11, pp. 1099–1101. DOI: https://www.doi.org/10.1023/A:10726225001109

20. Verdier N., Khakani S., Lepage D., Prebe A., Ayme-Perrot D., Dolle M., Rochefort D. Polyacrylonitrile-based rubber (HNBR) as a new potential elastomeric binder for lithi-um-ion battery electrodes. J. Power Sources, 2019, vol. 440, pp. 227111. DOI: https://www.doi.org/10.1016/j.jpowsour.2019.227111

21. Ui K., Fujii D., Niwata Y., Karouji T., Shibata Y., Kadoma Y., Shimada K., Kumaga N. Analysis of solid electrolyte interface formation reaction and surface deposit of natural graphite negative electrode employing polyacrylic acid as a binder. J. Power Sources, 2014, vol. 247, pp. 981–990. DOI: https://www.doi.org/10.1016/j.jpowsour.2013.08.083

22. Komaba S., Yabuuchi N., Ozeki T., Okushi K., Yui H., Konno K., Katayama Y., Miura T. Functional binders for reversible lithium intercalation into graphite in propylene carbonate and ionic liquid media. J. Power Sources, 2010, vol. 195, pp. 6069–6074. DOI: https://www.doi.org/10.1016/j.jpowsour.2009.12.058

23. Mazouzi D., Karkar Z., Hernandez C. R., Manero P. J., Guyomard D., Roue L., Lestriez B. Critical roles of binders and formulation at multiscales of silicon-based composite electrodes. J. Power Sources, 2015, vol. 280, pp. 533–549. DOI: https://www.doi.org/10.1016/j.jpowsour.2015.01.140

24. Kasinathan R., Marinaro M., Axmann P., Wohlfahrt-Mehrens M. Influence of the molecular weight of poly-acrylic acid binder on performance of Si-alloy/graphite composite anodes for lithium-ion batteries. Energy Technol., 2018, vol. 6, no. 11, pp. 2256–2263. DOI: https://www.doi.org/0.1002/ente.201800302

25. Choi S. J., Yim T., Cho W., Mun J., Jo Y. N., Kim K. J., Jeong G., Kim T.-H., Kim Y.-J. Rosin-embedded poly(acrylic acid) binder for Silicon/Graphite negative electrode. ACS Sustain. Chem. Eng., 2016, vol. 4, no. 12, pp. 6362–6370. DOI: https://www.doi.org/10.1021/acssuschemeng.6b00920

26. Song J., Zhou M., Yi R., Xu T., Gordin M. L., Tang D., Yu Z., Regula M., Wang D. Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries. Adv. Func. Mater, 2014, vol. 24, no. 37, pp. 5904–5910. DOI: https://www.doi.org/10.1002/adfm.201401269

27. Koo B., Kim H., Cho Y., Lee K. T., Choi N. S., Cho J. A Highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries. Ang. Chem. Int. Ed., 2012, vol. 51, no. 35, pp. 8762–8767. DOI: https://www.doi.org/10.1002/anie.201201568

28. Aoki S., Han Z.-J., Yamagiwa K., Yabuuchi N., Murase M., Okamoto K., Kiyosu T., Satoh M., Komaba S. Acrylic acid-based copolymers as functional binder for sili-con/graphite composite electrode in lithium-ion batteries. J. Electrochem. Soc., 2015, vol. 162, no. 12, pp. A2245–A2249. DOI: https://www.doi.org/10.1149/2.0171512jes

29. Li J., Zhang G., Yang Y., Yao D., Lei Z., Li S., Deng Y., Wang C. Glycinamide modified polyacrylic acid as high-performance binder for silicon anodes in lithium-ion batteries. J. Power Sources, 2018, vol. 406, pp. 102–109. DOI: https://www.doi.org/10.1016/j.jpowsour.2018.10.057

30. Moretti A., Maroni F., Nobili F., Passerini S. V2O5 electrodes with extended cycling ability and improved rate performance using polyacrylic acid as binder. J. Power Sources, 2015, vol. 293, pp. 1068–1072. DOI: https://www.doi.org/10.1016/j.jpowsour.2014.09.150

31. Chong J., Xun S., Zheng H., Song X., Liu G., Ridgway P., Wang J. Q., Battaglia V. S. A comparative study of polyacrylic acid and poly (vinylidene difluoride) binders for spherical natural graphite/LiFePO4 electrodes and cells. J. Power Sources, 2011, vol. 196, no. 18, pp. 7707–7714. DOI: https://www.doi.org/10.1016/j.jpowsour.2011.04.043

32. Sun J., Ren X., Li Z., Tian W., Zheng Y., Wang L., Liang G. Effect of poly (acrylic acid)/poly (vinyl alcohol) blending binder on electrochemical performance for lithium iron phosphate cathodes. J. Alloys Compd., 2019, vol. 783, pp. 379–386. DOI: https://www.doi.org/10.1016/j.jallcom.2018.12.197

33. Kraytsberg A., Ein-Eli Y. Higher, stronger, better… A review of 5 volt cathode materials for advanced lithium-ion batteries. Adv. Energy Mater., 2012, vol. 2, no. 8, pp. 922–939. DOI: https://www.doi.org/10.1002/aenm.201200068

34. Pieczonka N. P. W., Borgel V., Ziv B., Leifer N., Dargel V., Aurbach D., Manthiram A. Lithium polyacrylate (LiPAA) as an advanced binder and a passivating agent for high-voltage Li-ion batteries. Adv. Energy Mater., 2015, vol. 5, no. 23, pp. 1501008–1501018. DOI: https://www.doi.org/10.1002/aenm.201501008

35. Li J., Le D. B., Ferguson P. P., Dahn J. R. Lithium polyacrylate as a binder for tin–cobalt–carbon negative electrodes in lithium-ion batteries. Electrochim. Acta, 2010, vol. 55, no. 8, pp. 2991–2995. DOI: https://www.doi.org/10.1016/j.electacta.2010.01.011

36. Komaba S., Okushi K., Ozeki T., Yui H., Katayama Y., Miura T., Saito T., Groult H. Polyacrylate modifier for graphite anode of lithium-ion batteries. J. Electrochem. Solid-State Lett., 2009, vol. 12, no. 5, pp. A107–A110. DOI: https://www.doi.org/10.1149/1.3086262

37. Komaba S., Yabuuchi N., Ozeki T., Han Z. J., Shimomura K., Yui H., Katayama Y., Miura T. Comparative study of sodium polyacrylate and poly (vinylidene fluoride) as binders for high capacity Si-graphite composite negative electrodes in Li-ion batteries. J. Phys. Chem. C, 2012, vol. 116, no. 1, pp.1380–1389. DOI: https://www.doi.org/10.1021/jp204817h

38. Garsuch R. R., Le D. B., Garsuch A., Li J., Wang S., Farooq A., Dahn J. R. Studies of lithium-exchanged Nafion as an electrode binder for alloy negatives in lithium-ion batteries. J. Electrochem. Soc., 2008, vol. 155, no. 10, pp. A721–A724. DOI: https://www.doi.org/10.1149/1.2956964

39. Xu J., Zhang Q., Cheng Y.-T. High capacity silicon electrodes with Nafion as binders for lithium-ion batteries. J. Electrochem. Soc., 2016, vol. 163, no. 3, pp. A401–A405. DOI: https://www.doi.org/10.1149/2.0261603jes

40. Xu J., Zhang L., Wang Y., Chen T., Al-Shroofy M., Cheng Y.-T. Unveiling the critical role of polymeric binders for silicon negative electrodes in lithium-ion full cells. ACS Appl. Mater. Interfaces, 2017, vol. 9, no. 4, pp. 3562–3569. DOI: https://www.doi.org/10.1021/acsami.6b11121

41. Shen C., Ge M., Zhang A., Fang X., Liu Y., Rong J., Zhou C. Silicon(lithiated)–sulfur full cells with porous silicon anode shielded by Nafion against polysulfides to achieve high capacity and energy density. Nano Energy, 2016, vol. 19, pp. 68–77. DOI: https://www.doi.org/10.1016/j.nanoen.2015.11.013

42. Li G., Cai W., Liu B., Li Z. A multi functional binder with lithium ion conductive polymer and polysulfide absorbents to improve cycleability of lithium – sulfur batteries. J. Power Sources, 2015, vol. 294, pp. 187–192. DOI: https://www.doi.org/10.1016/j.jpowsour.2015.06.083

43. Chiu K.-F., Su S. H., Leu H.-J., Chen Y. S. Application of lithiated perfluorosulfonate ionomer binders to enhance high rate capability in LiMn2O4 cathodes for lithium ion batteries. Electrochim. Acta, 2014, vol. 117, pp. 134–138. DOI: https://www.doi.org/10.1016/j.electacta.2013.11.115

44. Oh J.-M., Geiculescu O., DesMarteau D., Creager S. Ionomer binders can improve discharge rate capability in lithium-ion battery cathodes. J. Electrochem. Soc., 2011, vol. 158, no. 2, pp. A207–A213. DOI: https://www.doi.org/10.1149/1.3526598

45. Wei Z., Xue L., Nie F., Sheng J., Shi Q., Zhao X. Study of sulfonated polyether ether ketone with pendant lithiated fluorinated sulfonic groups as ion conductive binder in lithium-ion batteries. J. Power Sources, 2014, vol. 256, pp. 28–31. DOI: https://www.doi.org/10.1016/j.jpowsour.2014.01.018

46. Shi Q., Xue L., Wei Z., Liu F., Du X., DesMarteau D. D. Improvement in LiFePO4-Li battery performance via poly (perfluoroalkylsulfonyl) imide (PFSI) based ionene composite binder. J. Mater. Chem. A, 2013, vol. 1, no. 47, pp. 15016–15021. DOI: https://www.doi.org/10.1039/C3TA13364H

47. Kargin V. A., ed. Entsiklopedija polymerov [Encyclopedia of Polymers : in 3 vols]. Moscow, Sovetskaya Entsiklopedija Publ., 1972, vol. 1. 1224 p. (in Russian).

48. Rogovin Z. A. Himija celljulozy [The chemistry of cellulose]. Moscow, Himija Publ., 1972. 519 p. (in Russian).

49. Drofenik J., Gaberscek M., Dominko R., Poulsen F. W., Mogensen M., Pejovnik S., Jamnik J. Cellulose as a binding material in graphitic anodes for Li ion batteries : a per-formance and degradation study. Electrochim. Acta, 2003, vol. 48, no. 7, pp. 883–889. DOI: https://www.doi.org/10.1016/S0013-4686(02)00784-3

50. Choi N.-S., Ha S.-Y., Lee Y., Jang J. Y., Jeong M.-H., Shin W. C., Ue M. Recent progress on polymeric binders for silicon anodes in lithium-ion batteries. J. Electrochem. Sci. Technol., 2015, vol. 6, no. 2, pp. 35–49. DOI: https://www.doi.org/10.5229/JECST.2015.6.2.35

51. Li J., Lewis R. B., Dahn J. R. Sodium Carboxymethyl Cellulose : A Potential Binder for Si Negative Electrodes for Li-Ion Batteries. J. Electrochem. Solid State Lett., 2007, vol. 10, no. 2, pp. A17–A20. DOI: https://www.doi.org/10.1149/1.2398725

52. Ding N., Xu J., Yao Y., Wegner G., Lieberwirth I., Chen C. Improvement of cyclability of Si as anode for Li-ion batteries. J. Power Sources, 2009, vol. 192, no. 2, pp. 644–651. DOI: https://www.doi.org/10.1016/j.jpowsour.2009.03.017

53. Lestriez B., Bahri S., Sandu I., Roue L., Guyomard D. On the binding mechanism of CMC in Si negative electrodes for Li-ion batteries. Electrochem. Commun., 2007, vol. 9, no. 12, pp. 2801–2806. DOI: https://www.doi.org/10.1016/j.elecom.2007.10.001

54. Bridel J. S., Azais T., Morcrette M., Tarascon J. M., Larcher D. Key parameters governing the reversibility of Si/Carbon/CMC electrodes for Li-ion batteries. Chem. Mat., 2010, vol. 22, no. 3, pp. 1229–1241. DOI: https://www.doi.org/10.1021/cm902688w

55. Huang C., Yu L., He S., Gan L., Liu J., Gong Z., Long M. Influence of molecular structure of carboxymethyl cellulose on high performance silicon anode in lithium-ion batteries. Int. J. Electrochem. Sci., 2019, vol. 14, pp. 4799–4811. DOI: https://www.doi.org/10.20964/2019.05.41

56. Hochgatterer N. S., Schweiger M. R., Koller S., Raimann P. R., Wohrle T., Wurm C., Winter M. Silicon/graphite composite electrodes for high-capacity anodes : influence of binder chemistry on cycling stability. J. Electrochem. Solid-State Lett., 2008, vol. 11, no. 5, pp. A76–A80. DOI: https://www.doi.org/10.1149/1.2888173

57. Mazouzi D., Lestriez B., Roue L., Guyomard D. Silicon composite electrode with high capacity and long cycle life. J. Electrochem. Solid-State Lett., 2009, vol. 12, no. 11, pp. A215–A218. DOI: https://www.doi.org/10.1149/1.3212894

58. Delpuech N., Mazouzi D., Dupre N., Moreau P., Cerbelaud M., Bridel J. S., Badot J.-C., De Vito E., Guyomard D., Lestriez B., Humbert B. Critical role of silicon nanoparticles surface on lithium cell electrochemical performance analyzed by FTIR, Raman, EELS, XPS, NMR, and BDS spectroscopies. J. Phys. Chem. C, 2014, vol. 118, no. 31, pp. 17318–17331. DOI: https://www.doi.org/10.1021/jp503949y

59. Bridel J. S., Azais T., Morcrette M., Tarascon J. M., Larcher D. In situ observation and long-term reactivity of Si/C/CMC composites electrodes for Li-ion batteries. J. Electrochem. Soc., 2011, vol. 158, no. 6, pp. A750–A759. DOI: https://www.doi.org/10.1149/1.3581024

60. Key B., Bhattacharyya R., Morcrette M., Seznec V., Tarascon J. M., Grey C. P. Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries. J. Am. Chem. Soc., 2009, vol. 131, no. 26, pp. 9239–9249. DOI: https://www.doi.org/10.1021/ja8086278

61. Menkin S., Golodnitsky D., Peled E. Artificial solid-electrolyte interphase (SEI) for improved cycleability and safety of lithium-ion cells for EV applications. Electrochem. Commun., 2009, vol. 11, no. 9, pp. 1789–1791. DOI: https://www.doi.org/10.1016/j.elecom.2009.07.019

62. You R., Han X., Zhang Z., Li L., Li C., Huang W., Wang J., Xu J., Chen S. An environmental friendly cross-linked polysaccharide binder for silicon anode in lithium-ion batteries, Ionics, 2019, vol. 25, no. 9, pp. 4109–4118. DOI: https://www.doi.org/10.1007/s11581-019-02972-z

63. Shin D., Park H., Paik U. Cross-linked poly(acrylic acid)-carboxymethyl cellulose and styrene-butadiene rubber as an ef?cient binder system and its physicochemical effects on a high energy density graphite anode for Li-ion batteries. Electrochem. Commun., 2017, vol. 77, pp.103–106. DOI: https://www.doi.org/10.1016/j.elecom.2017.02.018

64. Li J., Klopsch R., Nowak S., Kunze M., Winter M., Passerini S. Investigations on cellulose-based high voltage composite cathodes for lithiumion batteries. J. Power Sources, 2011, vol. 196, no. 18, pp. 7687–7691. DOI: https://www.doi.org/10.1016/j.jpowsour.2011.04.030

65. Kil K. C., Paik U. Lithium salt of carboxymethyl cellulose as an aqueous binder for thick graphite electrode in lithium ion batteries. Macromol. Res., 2015, vol. 23, no. 8, pp. 719–725. DOI: https://www.doi.org/10.1007/s13233-015-3094-1

66. Qiu L., Shao Z., Wang D., Wang W., Wang F., Wang J. Enhanced electrochemical properties of LiFePO4 (LFP) cathode using the carboxymethyl cellulose lithium (CMC–Li) as novel binder in lithium-ion battery. Carbohydr. Polym., 2014, vol. 111, no. 13, pp. 588–591. DOI: https://www.doi.org/10.1016/j.carbpol.2014.05.027

67. Elnashar M., ed. Biotechnology of Biopolymers. Rijeka, InTech, 2011. 364 p.

68. Chen C., Lee S. H., Cho M., Kim J., Lee Y. Cross-Linked Chitosan as an Efficient Binder for Si Anode of Li-ion Batteries. ACS Appl. Mater. Interfaces, 2016, vol. 8, no. 4, pp. 2658–2665. DOI: https://www.doi.org/10.1021/acsami.5b10673

69. Pestov A. V., Jatluk Ju. G. Karboksialkilirovannye proizvodnye hitina i hitozana [Carboxyalkylated chitin and chitosan derivatives]. Ekaterinburg, UrO RAN Publ., 2007. 102 p. (in Russian).

70. Yue L., Zhang L., Zhong H. Carboxymethyl chitosan : A new water soluble binder for Si anode of Li-ion batteries. J. Power Sources, 2014, vol. 247, pp. 327–331. DOI: https://www.doi.org/10.1016/j.jpowsour.2013.08.073

71. Sun M., Zhong H., Jiao S., Shao H., Zhang L. Investigation on carboxymethyl chitosan as new water soluble binder for LiFePO4 cathode in Li-ion batteries. Electrochim. Acta, 2014, vol. 127, pp. 239–244. DOI: https://www.doi.org/10.1016/j.electacta.2014.02.027

72. Rajeev K.K, Kim E., Nam J., Lee S., Mun J., Kim T.-H. Chitosan-grafted-polyaniline copolymer as an electrically conductive and mechanically stable binder for high-performance Si anodes in Li-ion batteries. Electrochim. Acta, 2020, vol. 333, pp. 1–20. DOI: https://www.doi.org/10.1016/j.electacta.2019.135532

73. Zhong H., He A., Lu J., Sun M., He J., Zhang L. Carboxymethyl chitosan/conducting polymer as water-soluble composite binder for LiFePO4 cathode in lithium ion batteries, J. Power Sources, 2016, vol. 336, pp. 107–114. DOI: https://www.doi.org/10.1016/j.jpowsour.2016.10.041

74. Kovalenko I., Zdyrko B., Magasinski A., Hertzberg B., Milicev Z., Burtovyy R., Luzinov I., Yushin G. A Major constituent of brown algae for use in high-capacity Li-ion batteries. Science, 2011, vol. 334, no. 6052, pp. 75–79. DOI: https://www.doi.org/10.1126/science.1209150

75. Liu J., Zhang Q. Wu Z.-Y., Wu J.-H., Li J.-T., Huang L., Sun S.-G. A high-performance alginate hydrogel binder for the Si/C anode of a Li-ion battery. Chem. Commun., 2014, vol. 50, no. 48, pp. 6386–6389. DOI: https://www.doi.org/10.1039/c4cc00081a

76. Wu Z.-H., Yang J.-Y., Yu B., Shi B.-M., Zhao C.-R., Yu Z.-L. Self-healing alginate–carboxymethyl chitosan porous scaffold as an effective binder for silicon anodes in lithium-ion batteries. Rare Metals, 2016, vol. 39, no. 9, pp. 832–839. DOI: https://www.doi.org/10.1007/s12598-016-0753-0

77. Ryou M.-H., Kim J., Lee I., Kim S., Jeong Y. K., Hong S., Ryu J. H., Kim T.-S., Park J.-K., Lee H., Choi J. W. Mussel-inspired adhesive binders for high-performance silicon nanoparticle anodes in Lithium-ion batteries. Adv. Mater., 2013, vol. 25, no. 11, pp. 1571–1576. DOI: https://www.doi.org/10.1002/adma.201203981

78. Bao W.-Z., Zhang Z., Gan Y.-Q., Wang X.-W., Lia J. Enhanced cyclability of sulfur cathodes in lithium-sulfur batteries with Na-alginate as a binder. J. Energy Chem., 2013, vol. 22, no. 5, pp. 790–794. DOI: https://www.doi.org/10.1016/S2095-4956(13)60105-9

79. Zhu S., Yu J., Yan X., Zhao E., Wang Y., Sun D., Jin Y., Kanamura K. Enhanced electrochemical performance from cross-linked polymeric network as binder for Li–S battery cathodes. J. Appl. Electrochem., 2016, vol. 46, no. 7, pp. 725–733. DOI: https://www.doi.org/10.1007/s10800-016-0957-x

80. Bigoni F., De Giorgio F., Soavi F., Arbizzani C. Sodium Alginate : A water-processable binder in high-voltage cathode formulations. J. Electrochem. Soc., 2016, vol. 164, no. 1, pp. A6171–A6177. DOI: https://www.doi.org/10.1149/2.0281701jes

81. Bigoni F., De Giorgio F., Soavi F., Arbizzani C. New formulations of high-voltage cathodes for Li-ion batteries with water-processable binders. ECS Trans., 2016, vol. 73, no. 1, pp. 249–257. DOI: https://www.doi.org/10.1149/07301.0249ecst

82. Liu J., Zhang Q., Zhang T., Li J.-T., Huang L., Sun S.-G. A robust ion-conductive bi-opolymer as a binder for Si anodes of Lithium-ion batteries. Adv. Func. Mater., 2015, vol. 25, no. 23, pp. 3599–3605. DOI: https://www.doi.org/10.1002/adfm.201500589

83. Carvalho D. V., Loeffler N., Hekmatfar M., Moretti A., Kim G.-T., Passerini S. Evaluation of guar gum-based biopolymers as binders for lithium-ion batteries electrodes. Electrochim. Acta, 2018, vol. 265, pp. 89–97. DOI: https://www.doi.org/10.1016/j.electacta.2018.01.083

84. Zhang T., Li J.-T., Liu J., Deng Y.-P., Wu Z.-G., Yin Z.-W., Guo D., Huang L., Sun S.-G. Suppressing the voltage-fading of layered lithium-rich cathode materials via an aqueous binder for Li-ion batteries. Chem. Commun., 2016, vol. 52, no. 25, pp. 4683–4686. DOI: https://www.doi.org/10.1039/C5CC10534J

85. Courtel F. M., Niketic S., Duguay D., Abu-Lebdeh Y., Davidson I. J. Water-soluble binders for MCMB carbon anodes for lithium-ion batteries. J. Power Sources, 2011, vol. 196, no. 4, pp. 2128–2134. DOI: https://www.doi.org/10.1016/j.jpowsour.2010.10.025

86. Ling M., Xu Y., Zhao H., Gu X., Qiu J., Li S., Wu M., Song X., Yan C., Liu G. Dual-functional gum arabic binder for silicon anodes in lithium ion batteries. Nano Energy, 2015, vol. 12, pp. 178–185. 10.1016/j.nanoen.2014.12.011.

87. Ling M., Zhao H., Xiaoc X., Shi F., Wu M., Qiu J., Li S., Song X., Liu G., Zhang S. Low cost and environmentally benign crack-blocking structures for long life and high power Si electrodes in lithium ion batteries. J. Mater. Chem. A, 2015, vol. 3, no. 5, pp. 2036–2042. DOI: https://www.doi.org/10.1039/C4TA05817H

88. Chou S.-L., Pan Y., Wang J. Z., Liu H. K., Dou S. X. Small things make a big difference : binder effects on the performance of Li and Na batteries. Phys. Chem. Chem. Phys. 2014, vol. 16, no. 38, pp. 20347–20359. DOI: https://www.doi.org/10.1039/C4CP02475C

89. Kamiyama Y., Israelachvili J. Effect of pH and salt on the adsorption and interactions of an amphoteric polyelectrolyte. Macromolecules, 1992, vol. 25, no. 19, pp. 5081–5088. DOI: https://www.doi.org/10.1021/ma00045a039

90. Montoro L. A., Rosolen J. M. Gelatin/DMSO : a new approach to enhancing the performance of a pyrite electrode in a lithium battery. Solid-State Ionics, 2003, vol. 159, no. 3–4, pp. 233–240. DOI: https://www.doi.org/10.1016/S0167-2738(02)00908-6

91. Gaberscek M., Bele M., Drofenik J., Dominko R., Pejovnik S. Improved Carbon anode for lithium batteries pretreatment of carbon particles in a polyelectrolyte solution. Electrochem. Solid-State Lett., 2000, vol. 3, no. 4, pp. 171–173. DOI: https://www.doi.org/10.1149/1.1390992

92. Dominko R., Gaberscek M., Drofenik J., Bele M., Pejovnik S. A novel coating technology for preparation of cathodes in Li-ion batteries. Electrochem. Solid-State Lett., 2001, vol. 4, no. 11, pp. A187–A190. DOI: https://www.doi.org/10.1149/1.1407995

93. Dominko R., Gaberscek M., Drofenik J., Bele M., Pejovnik S., Jamnik J. The role of carbon black distribution in cathodes for Li ion batteries. J. Power Sources, 2003, vol. 119, pp. 770–773. DOI: https://www.doi.org/10.1016/S0378-7753(03)00250-7

94. Wang Y., Huang Y., Wang W., Huang C., Yu Z., Zhang H., Sun J., Wang A., Yuan K. Structural change of the porous sulfur cathode using gelatin as a binder during discharge and charge. Electrochim. Acta, 2009, vol. 54, no. 16, pp. 4062–4066. DOI: https://www.doi.org/10.1016/S0378-7753(03)00250-7

95. Sun J., Huang Y., Wang W., Yu Z., Wang A., Yuan K. Application of gelatin as a binder for the sulfur cathode in lithium–sulfur batteries. Electrochim. Acta, 2008, vol. 53, no. 24, pp. 7084–7088. DOI: https://www.doi.org/10.1016/j.electacta.2008.05.022

96. Sun J., Huang Y., Wang W., Yu Z., Wang A., Yuan K. Preparation and electrochemical characterization of the porous sulfur cathode using a gelatin binder. Electrochem. Commun., 2008, vol. 10, no. 6, pp. 930–933. DOI: https://www.doi.org/10.1016/j.elecom.2008.04.016

97. Zhang W., Huang Y., Wang W., Huang C., Wang Y., Yu Z., Zhang H. Influence of pH of gelatin solution on cycle performance of the sulfur cathode. J. Electrochem. Soc., 2010, vol. 157, no. 4, pp. A443–А446. DOI: https://www.doi.org/10.1149/1.3299323

98. Jiang S., Gao M., Huang Y., Wang W., Zhang H., Yu Z., Wang A., Yuan K. Enhanced performance of the sulfur cathode with L-cysteine-modified gelatin binder. J. Adhes. Sci. Technol., 2013, vol. 27, no. 9, pp. 1006–1011. DOI: https://www.doi.org/10.1080/01694243.2012.727171

Received: 
29.04.2020
Accepted: 
14.05.2020
Published: 
15.12.2020