For citation:
Telegina O. S., Goffman V. G., Gorokhovskii A. V., Kompan M. E., Sleptsov V. V., Gorshkov N. V., Kovyneva N. N. The nature conductivity in the amorphous potassium polytitanate. Electrochemical Energetics, 2015, vol. 15, iss. 1, pp. 23-28. DOI: 10.18500/1608-4039-2015-15-1-23-28, EDN: UDFJGV
The nature conductivity in the amorphous potassium polytitanate
The work is devoted to investigation of the anisotropy of conductivity and determination of the most likely charge carriers in the amorphous polytitanate potassium. Defined ac – and dc-conductivity, dielectric permittivity, dielectric loss tangent in mutually perpendicular directions compacted potassium polytitanate.
An increase in the shift of the peak and the dielectric loss tangent in a frequency region when measured along the preferred direction location lamellae potassium polytitanate.
1. Gorokhovsky A. V., Palagin A. I., Panova L. G., Ustinova T. P., Burmistrov I. N., Aristov D.V. Manufacturing submicro-nanoscale potassium polytitanates and composite materials based on them. Nanotehnika [Nanotechnics], 2009, no. 3, pp. 38–44 (in Russian).
2. Sanchez-Monjaras T., Gorokhovsky A. V., Escalante-Garcia J. I. Molten salt synthesis and characterization of polytitanate ceramic precursors with varied TiO2/K2O molar ratio. J. Am. Ceram. Soc., 2008, vol. 91, no. 9, pp. 3058–3065. Doi: 10.1111/j.1551–2916.2008.02574.x.
3. Aguilar-Gonzalez M., Gorokhovsky A. V., Aguilar-Elguezabal A. Removal of lead and nickel from aqueous solutions by SiO2-doped potassium titanate. Mater. Sci. Eng. B, 2010, vol. 174, no. 1–3, pp. 105–113. Doi: 10.1016/j.mseb.2010.03.057.
4. Goffman V. G., Gorokhovsky A. V., Kompan M. E., Tretyachenko E. V., Telegina O. S., Kovnev A. V., Fedorov F. S. Electrical properties of the potassium polytitanate compacts. J. Alloys Compounds., 2014, vol. 615. pp. 526–529. Doi:10.1016/j.jallcom.2014.01.121.
5. Sanchez-Monjaras T., Gorokhovsky A. V., Escalante-Garcia J. I. Potassium polytitanates. Synthesis, characterizarion and thermal behavior by sintering of self-toughed ceramic materials. Book of Abstracts of VI Intern. Conf. «Solid State Chemistry». Prague, 2004, pp. 88.
6. Barsoukov E., Macdonald J. R. Impedance Spectroscopy Theory, Experiment, and Applications. Canada, John Wiley \& Sons, 2005, 595 р. Doi: 10.1002/0471716243.
7. Bondarenko A. S., Ragoisha G. A., Pomerantsev A. L. Inverse Problem in Potentiodynamic Electrochemical Impedance Spectroscopy. Progress in Chemometrics Research / ed. A. L. Pomerantsev New York, Nova Science Publishers, 2005, pp. 89–102 (the program is available online at http://www.abc.chemistry.bsu.by/vi/analyser/).
8. Kovnev A. V., Goffman V. G., Gorokhovskii A. V., Gorshkov N. V., Kompan M. E., Telegina O. S., Tret'yachenko E. V., Sleptsov V. V., Baranov A. M. Impedansnaya spektroskopiya polititanata kaliya, modificirovannogo solyami kobal'ta [Impedance spectroscopy of potassium polytitanate modified with cobalt salts], Elektrokhimicheskaya energetika [Electrochemical energetics], 2014, vol. 14, no. 3, pp. 149–157 (in Russian).
9. Blythe A. R., Bloor D. Electrical properties of polymers. Cambridge : Cambridge University Press, 2005, 487 p.