For citation:
Zhuk A. Z., Ilyukhina A. V., Ilyukhin A. S., Kleimenov B. V. Temperature dependence of polarization and corrosion characteristics of different aluminum alloys in alkaline electrolyte. Electrochemical Energetics, 2013, vol. 13, iss. 2, pp. 83-89. DOI: 10.18500/1608-4039-2013-13-2-83-89, EDN: RDNDDZ
Temperature dependence of polarization and corrosion characteristics of different aluminum alloys in alkaline electrolyte
Aluminum is one of the most energy-intensive materials, which is the base for the air-aluminum electrochemical generators (AA ECG) with a specific energy of 300 W·h/kg. Such generators can be considered as a promising source of energy for electric vehicle due to their advantages such as high energy, the possibility of organizing a closed cycle of aluminum production and use of heat generated by the AA ECG for heating the interior of the electric vehicle. The operation of AA ECG is most effective when aluminum alloys with indium in an alkaline electrolyte (with the addition of tin salts as a corrosion inhibitor) are used. The subjects of temperature influence on the anodic dissolution and aluminum corrosion and maximum power density are still not enough studied. This article is devoted to the study of the temperature effect on the anodic dissolution of aluminum and its alloys at the maximum achievable current density.
1. Yang S., Knickle H. // J. Power Sources. 2002. Vol. 112. P. 162–173.
2. Жук А. З., Клейменов Б. В., Фортов В. Е., Шейндлин А. Е. Электромобиль на алюминиевом топливе. М.: Наука, 2012.
3. Li Q., Bjerrum N. J. // J. Power Sources. 2002. Vol. 110. P. 1–10.
4. Shkolnikov E. I., Zhuk A. Z., Vlaskin M. S. // Renewable and Sustainable Energy Reviews. 2011. Vol. 15. P. 4611–4623.
5. Egan D. R., Ponce de Leon C., Wood R. J. K., Jones R. L., Stokes K. R., Walsh F. C. // J. Power Sources. 2013. URL: http:\\dx.doi.org\10.1016\j.jpowsour.2013.01.141.
6. Doche M. L., Novel-Cattin F., Durand R., Rameau J. J. // J. Power Sources. 1997. Vol. 65. P. 197–205.
7. Kapali V., Iyer S. V., Balaramachandran V., Sarangapani K. B., Ganesan M., Kulandainathan M. A., Mideen A. S. // J. Power Sources. 1992. Vol. 39. P. 263–269.
8. Zhuk A. Z., Sheindlin A. E., Kleymenov B. V., Shkolnikov E. I., Lopatin M. Y. // J. Power Sources. 2006. Vol. 157. P. 921–926.
9. Жук А. З., Клейменов Б. В., Школьников Е. И., Берш А. В., Григорьянц Р. Р., Деньщиков К. К., Ларичев М. Н., Мазалов Ю. А., Мирошниченко В. И., Шейндлин А. Е. Алюмоводородная энергетика. М.: ОИВТ РАН, 2007.
10. Pat. 4751086 USA, Int. Cl.4 H 01 M 4/58, H 01 M 4/88, C 22 C 21/00. Aluminium anode alloy / Jeffrey P. W. (CA), Halliop W. (CA), Smith F. N. (CA). – № 06/888779; filed 22.07.1986, date of patent 14.06.1988. — 4 p.: no drawings.
11. Pat. 5004654 USA, Int. Cl.5 H 01 M 4/24, H 01 M 4/46. Aluminium batteries / Hunter J. A. (UK), Scamans G. M. (UK), O’Callaghan W. B. (CA), Wycliffe P. A. (CA). – № 07/389619, filed 04.08.1989, date of patent 02.04.1991. — 8 p.: 1 drawing sheet.