Cd|KOH|NiOOH

Zn|NH4CI|MnO2

Li|LiClO4|MnO2

Pb|H2SO4|PbO2

H2|KOH|O2

Synthesis and Electrochemical Properties of Lithium-Accumulating Electrode Material Based on Li₂MnSiO₄

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).

Synthesis of electrode material based on Li2MnSiO4/С using widely used, environmentally safe and inexpensive Li, Si and Mn-containing precursors was considered. Mechanochemical activation was used for improving the flow of thesolid-state synthetic process and providing the necessary reactivity to obtain the target product with a high content of the main lithium-accumulating compound.Structural and morphological features of the composite were investigated by X-ray diffraction, laser diffraction granulometry. The influence of solid-phase synthesis conditions on the electrochemical characteristics of the cathode material was determind. Electrochemical characterization was studied by the method of direct current chronopotentiometry (galvanostatic charge-discharge).

Literature

1. Nagaura T., Tozawa K. Lithium-Ion Rechargeable Battery. Progress in Batteries & Solar Cells. 1990, vol. 9, pp. 209–217.

2. Mizushima K., Jones P. C., Wiseman P. J., Goodenough J. B. LixCoO2 (0 < x <  − 1) : A new cathode material for batteries of high energy density. Mater. Res. Bull., 1980, vol. 15, pp. 783–789.

3. Doughty D., Roth E. P. A General Discussion of Li-Ion Battery Safety. Electrochem. Soc. Interfaces, 2012, vol. 21, pp. 37–44.

4. Padhi A. K., Nanjundaswamy K. S., Goodenough J. B. Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries. J. Electrochem. Soc., 1997, vol. 144, pp. 1188–1194.

5. Padhi A. K., Nanjundaswamy K. S., Masquelier C., Okada S., Goodenough J. B. Effect of Structure on the Fe3+/Fe2+ Redox Couple in Iron Phosphates. J. Electrochem. Soc., 1997, vol. 144, pp. 1609–1613.

6. Armand M., Gauthier M., Magnan J.-F., Ravet N. Method for synthesis of carbon-coated redox materials with controlled size. World Patent 2002, WO2002027823 A1. Available at: https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2002027823 (accessed 1 March 2019).

7. Dominko R., Bele M., Gaberscek M., Meden A., Remskar M., Jamnik J. Structure and electrochemical performance of Li2MnSiO4 and Li2FeSiO4 as potential Li-battery cathode materials. Electrochem. Commun., 2006, vol. 8, pp. 217–222.

8. Dominko R. Li2MSiO4 (M = Fe and/or Mn) cathode materials. J. Power Sources, 2008, vol. 184, pp. 462–468.

9. Belharouak I., Abouimrane A., Amine K. Structural and Electrochemical Characterization of Li2MnSiO4 Cathode Material. J. Phys. Chem. C., 2009, vol. 113, pp. 20733–20737.

10. Gong Z. L., Li Y. X., He G. N., Li J., Yang Y. Nanostructured Li2FeSiO4 Electrode Material Synthesized through Hydrothermal-Assisted Sol-Gel Process. Electrochem. Solid-State Lett., 2008, vol. 11, pp. A60–A63.

11. Kokalj A., Dominko R., Mali G., Meden A., Gaberscek M., Jamnik J. Beyond One-Electron Reaction in Li Cathode Materials : Designing Li2MnxFe1 − xSiO4. Chem. Mater., 2007, vol. 19, pp. 3633–3640.

12. Ivanishchev A. V., Churikov A. V., Akmaev A. S., Ushakov A. V., Ivanishcheva I. A., Gamayunova I. M., Sneha M. J., Dixit A. The Synthesis, Structure, and Electrochemical Propertiesof Li2FeSiO4-Based Lithium-Accumulating Electrode Material. Russ. J. Electrochem., 2017, vol. 53, pp. 302–311.

13. Dominko R., Bele M. Gaberšček M., Meden A., Remškar M., Jamnik J. Structure and electrochemical performance of Li2MnSiO4 and Li2FeSiO4 as potential Li-battery cathode materials. Electrochem. Commun., 2006, vol. 8, pp. 217–222.

14. Gummow R. J., He Y. Recent progress in the development of Li2MnSiO4 cathode materials. J. Power Sources, 2014, vol. 253, pp. 315–331.

Full Text (PDF):
(downloads: 247)