ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)

For citation:

Kulova T. L., Skundin A. M. Polymer Electrolytes for Sodium-ion Batteries. Electrochemical Energetics, 2018, vol. 18, iss. 1, pp. 26-47. DOI: 10.18500/1608-4039-2018-18-1-26-47, EDN: YWUOWC

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 77)
Article type: 

Polymer Electrolytes for Sodium-ion Batteries

Kulova Tat'yana L'vovna, Institute of Physical Chemistry and Electrochemistry of A. N. Frumkina of RAS
Skundin Aleksandr Mordukhaevich, Institute of Physical Chemistry and Electrochemistry of A. N. Frumkina of RAS


The critical analysis of literature of last 15 years, concerning solid polymer electrolytes with Na+-ion-conductivity is presented. True polymer electrolytes as well as gel-polymer electrolytes based on polyethylene oxide, polyacrylonitrile, polyvinyl alcohol, polyvinyl chloride, polyvinyl pyrrolidone, PVdF–HFP, PMMA, Nafion are reviewed. Special attention is paid for temperature dependence of conductivity.


1. Skundin A. M., Kulova T. L., Yaroslavtsev A. B. Sodium-ion Batteries (a Review). Russian J. Electrochemistry, 2018, vol. 54, no. 2, pp. 71–110.

2. Vignarooban K., Kushagra R., Elango A., Badami P., Mellander B.-E., Xu X., Tucker T. G., Nam C., Kannan A. M. Current trends and future challenges of electrolytes for sodium-ion batteries. Intern. J. Hydrogen Energy, 2016, vol. 41, pp. 2829–2846.

3. Cao С., Liu W., Tan L., Liao X., Li L. Sodium-ion batteries using ion exchange membranes as electrolytes and separators. Chem. Commun., 2013, vol. 49, pp. 11740–11742.

4. Ponrouch A., Monti D., Boschin A., Steen B., Johansson P., Palacin M. R. Non-aqueous electrolytes for sodium-ion batteries. J. Mater. Chem. A, 2015, vol. 3, pp. 22–42.

5. Che H., Chen S., Xie Y., Wang H., Amine K., Liao X.-Z., Ma Z.-F. Electrolyte design strategies and research progress for room-temperature sodium-ion batteries. Energy Environ. Sci., 2017, vol. 10, pp. 1075–1101.

6. Jiang C., Li H. Q., Wang C. L. Recent progress in solid-state electrolytes for alkali-ion batteries. Science Bull., 2017, vol. 62, pp. 1473–1490.

7. Stephan A. M., Nahm K. S. Review on composite polymer electrolytes for lithium batteries. Polymer, 2006, vol. 47, pp. 5952–5964.

8. Zhang Q. Q., Liu K., Ding F., Liu X. J. Recent advances in solid polymer electrolytes for lithium batteries. Nano Research, 2017, vol. 10, pp. 4139–4174.

9. Liao Y. H., Li W. S. Research Progresses on Gel Polymer Separators for Lithium-Ion Batteries. Acta Physico-chimica Sinica, 2017, vol. 33, pp. 1533–1547. DOI: 10.3866 / PKU.WHXB201704281.

10. Arya A., Sharma A. L. Polymer electrolytes for lithium ion batteries: a critical study. Ionics, 2017, vol. 23, pp. 497–540. DOI: 10.1007 / s11581–016–1908–6.

11. Zhang H., Li C. M., Piszcz M., Coya E., Rojo T., Rodriguez-Martinez L. M., Armand M., Zhou Z. B. Single lithium-ion conducting solid polymer electrolytes: advances and perspectives. Chem. Soc. Rev., 2017, vol. 46, pp. 797–815. DOI: 10.1039 / c6cs00491a.

12. Chen R. J., Qu W. J., Guo X., Li L., Wu F. The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons. Materials Horizons, 2016, vol. 3, pp. 487–516. DOI: 10.1039 / c6mh00218h.

13. Yue L. P., Ma J., Zhang J. J., Zhao J. W., Dong S. M., Liu Z. H., Cui G. L., Chen L. Q. All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Materials, 2016, vol. 5, pp. 139–164. DOI: 10.1016/ j.ensm.2016.07.003.

14. Long L. Z., Wang S. J., Xiao M., Meng Y. Z. Polymer electrolytes for lithium polymer batteries. J. Mater. Chem. A, 2016, vol. 4, pp. 10038–10069. DOI: 10.1039 / c6ta02621d.

15. Hassoun J., Scrosati B. Review-Advances in Anode and Electrolyte Materials for the Progress of Lithium-Ion and beyond Lithium-Ion Batteries. J. Electrochem. Soc., 2015, vol. 162, pp. A2582–A2588. DOI: 10.1149 / 2.0191514jes.

16. Xue Z. G., He D., Xie X. L. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J. Mater. Chem. A, 2015, vol. 3, pp. 19218–19253. DOI: 10.1039 / c5ta03471j.

17. Quartarone E., Mustarelli P. Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem. Soc. Rev., 2011, vol. 40, pp. 2525–2540. DOI: 10.1039 / c0cs00081g.

18. Stephan A. M., Nahm K. S. Review on composite polymer electrolytes for lithium batteries. Polymer, 2006, vol. 47, pp. 5952–5964. DOI: 10.1016/ j.polymer.2006.05.069.

19. Stephan A. M. Review on gel polymer electrolytes for lithium batteries. Eur. Polym. J., 2006, vol. 42, pp. 21–42. DOI: 10.1016/ j.eurpolymj.2005.09.017.

20. Cheng X., Pan J., Zhao Y., Liao M., Peng H. Gel Polymer Electrolytes for Electrochemical Energy Storage. Adv. Energy Mater., 2018, vol. 8, iss. 7, article no. 1702184.

21. Jonsson E., Johansson P. Modern battery electrolytes: Ion–ion interactions in Li+ / Na+ conductors from DFT calculations. Phys. Chem. Chem. Phys., 2012, vol. 14, pp. 10774–10779.

22. Fenton D. E., Parker J. M., Wright P. V. Complexes of alkali-metal ions with poly(ethylene oxide). Polymer, 1973, vol. 14, pp. 589.

23. Wright P. V., Electrical conductivity in ionic complexes of poly (ethylene oxide). Br. Polym. J., 1975, vol. 7, pp. 319–327.

24. Lee C. C., Wright P. V. Morphology and ionic-conductivity of complexes of sodium-iodide and sodium thiocyanate with poly(ethylene oxide). Polymer, 1982, vol. 23, pp. 681–689.

25. Perrier M., Besner S., Paquette C., Vallee A., Lascaud S., Prud’homme J. Mixed-alkali effect and short-range interactions in amorphous poly(ethylene oxide) electrolytes. Electrochim. Acta, 1995, vol. 40, pp. 2123–2129.

26. Ferry A., Marca Doeff M. M., De Jonghe L. C. Transport Property and Raman Spectroscopic Studies of the Polymer Electrolyte System P(EO)n––NaTFSI. J. Electrochem. Soc., 1998, vol. 145, pp. 1586–1592.

27. Ferry A., Marca Doeff M. M., De Jonghe L. C. Transport property measurements of polymer Electrolytes. Electrochim. Acta, 1998, vol. 43, pp. 1387–1393.

28. Fauteux D., Lupien M. D., Robitaille C. D. Phase Diagram, Conductivity, and Transference Number of PEO–NaI Electrolytes. J. Electrochem. Soc., 1987, vol. 134, pp. 2761–2767.

29. Greenbaum S. G., Pak Y. S., Wintersgill M. C., Fontanella J. J., Schultz J. W., Andeen C. G. NMR, DSC, DMA, and High Pressure Electrical Conductivity Studies in PPO Complexed with Sodium Perchlorate. J. Electrochem. Soc., 1988, vol. 135, pp. 235–238.

30. Sreekanth T., Reddy M. J., Ramalingaiah S., Subba Rao U. V. Ion-conducting polymer electrolyte based on poly(ethylene oxide) complexed with NaNO3 salt-application as an electrochemical cell. J. Power Sources, 1999, vol. 79, pp. 105–110.

31. Chandra A., Chandra A., Thakur K. Synthesis and ion conduction mechanism on hot-pressed sodium ion conducting nano composite polymer electrolytes. Arabian J. Chem., 2016, vol. 9, pp. 400–407.

32. Kumar K. K., Ravi M., Pavani Y., Bhavani S., Sharma A. K., Narasimha Rao V. V. R. Electrical conduction mechanism in NaCl complexed PEO / PVP polymer blend electrolytes. J. Non-Crystalline Solids, 2012, vol. 358, pp. 3205–3211.

33. Kumar K. K., Ravi M., Pavani Y., Bhavani S., Sharma A. K., Narasimha Rao V. V. R. Investigations on PEO / PVP / NaBr complexed polymer blend electrolytes for electrochemical cell applications. J. Membr. Sci., 2014, vol. 454, pp. 200–211.

34. Stolwijk N. A., Heddier C., Reschke M., Wiencierz M., Bokeloh J., Wilde G. Salt-Concentration Dependence of the Glass Transition Temperature in PEO-NaI and PEO-LiTFSI Polymer Electrolytes. Macromolecules, 2013, vol. 46, pp. 8580–8588.

35. Stolwijk N. A., Wiencierz M., Obeidi Sh. Mass and charge transport in the PEO–NaI polymer electrolyte system: effects of temperature and salt concentration. Faraday Discuss, 2007, vol. 134, pp. 157–169.

36. Martinez-Cisneros C. S., Levenfeld B., Varez A., Sanchez J. Y. Development of sodium-conducting polymer electrolytes: comparison between film-casting and films obtained via green processes. Electrochim. Acta, 2016, vol. 192, pp. 456–466.

37. Mohamed N. S., Zakaria M. Z., Ali A. M. M., Arof A. K. Characteristics of poly (ethylene oxide)-NaI polymer electrolyte and electrochemical cell performances. J. Power Sources, 1997, vol. 66, pp. 169–172.

38. Pradhan D. K., Choudhary R. N. P., Samantaray B. K., Karan N. K., Katiyar R. S. Effect of Plasticizer on Structural and Electrical Properties of Polymer Nanocompsoite Electrolytes. Intern. J. Electrochem. Sci., 2007, vol. 2, pp. 861–871.

39. Patel M., Chandrappa K. G., Bhattacharyya A. J. Increasing ionic conductivity of polymer–sodium salt complex by addition of a non-ionic plastic crystal. Solid State Ionics, 2010, vol. 181, pp. 844–848.

40. Chandrasekaran R., Selladurai S. Preparation and characterization of a new polymer electrolyte (PEO:NaClO3) for battery application. J. Solid State Electrochem., 2001, vol. 5, pp. 355–361.

41. Ni’mah Y. L., Cheng M.-Y., Cheng J. H., Rick J., Hwang B.-J. Solid-state polymer nanocomposite electrolyte of TiO2 / PEO / NaClO4 for sodium ion batteries. J. Power Sources, 2015, vol. 278, pp. 375–381.

42. Colo F., Bella F., Naira J. R., Destro M., Gerbaldia C. Cellulose-based novel hybrid polymer electrolytes for green and efficient Na-ion batteries. Electrochim. Acta, 2015, vol. 174, pp. 185–190.

43. West K., Zachau-Christiansen B., Jacobsen T., Hiort-Lorenzen E., Skaarup S. Poly(ethy1ene oxide)-Sodium Perchlorate Electrolytes in Solid-state Sodium Cells. British Polymer J., 1988, vol. 20, pp. 243–246.

44. Colo F., Bella F., Nair J. R., Gerbaldi C. Light-cured polymer electrolytes for safe, low-cost and sustainable sodium-ion batteries. J. Power Sources, 2017, vol. 365, pp. 293–302.

45. Chandra A., Chandra A., Thakur K. Synthesis and characterization of hot pressed ion conducting solid polymer electrolytes: (1 ? x)PEO: xNaClO4. Eur. Phys. J. Appl. Phys., 2015, vol. 69, article no. 20901.

46. Koduru H. K., Marino L., Scarpelli F., Petrov A. G., Marinov Y. G., Hadjichristov G. B., Iliev M. T., Scaramuzza N. Structural and dielectric properties of NaIO4 – Complexed PEO / PVP blended solid polymer electrolytes. Current Applied Physics, 2017, vol. 17, pp. 1518–1531.

47. Freitag K. M., Walke P., Nilges T., Kirchhain H., Spranger R. J., van Wullen L. Electrospun-sodiumtetrafluoroborate-polyethylene oxide membranes for solvent-free sodium ion transport in solid state sodium ion batteries. J. Power Sources, 2018, vol. 378, pp. 610–617.

48. Hashmi S. A., Chandra S. Experimental investigations on a sodium-ion-conducting polymer electrolyte based on poly(ethylene oxide) complexed with NaPF6. Materials Science and Engineering, 1995, vol. B34, pp. 18–26.

49. Boschin A., Johansson P. Characterization of NaX (X: TFSI, FSI) – PEO based solid polymer electrolytes for sodium batteries. Electrochim. Acta, 2015, vol. 175, pp. 124–133.

50. Serra Moreno J., Armand M., Berman M. B., Greenbaum S. G., Scrosati B., Panero S. Composite PEOn:NaTFSI polymer electrolyte: Preparation, thermal and electrochemical characterization. J. Power Sources, 2014, vol. 248, pp. 695–702.

51. Ma Q., Liu J., Qi X., Rong X., Shao Y., Feng W., Nie J., Hu, Y.-S., Li H., Huang X., Chen L., Zhou Z. A new Na[(FSO2)(n-C4F9SO2)N]-based polymer electrolyte for solid-state sodium batteries. Journal of Materials Chemistry A, 2017, vol. 5, pp. 7738–7743.

52. Chandra A., Chandra A., Thakur K. Na+ Ion Conducting Hot-pressed Nano Composite Polymer Electrolytes. Portugaliae Electrochimica Acta, 2012, vol. 30, pp. 81–88.

53. Bhide A., Hariharan K. A new polymer electrolyte system (PEO)n:NaPO3. J. Power Sources, 2006, vol. 159, pp. 1450–1457.

54. Gupta S., Singh P. K., Bhattacharya B. Charge carriers dynamics in PEO plus NaSCN polymer electrolytes. Ionics, 2018, vol. 24, pp. 163–167.

55. Mohan V. M., Raja V., Balaji Bhargav P., Sharma A. K., Narasimha Rao V. V. R. Structural, electrical and optical properties of pure and NaLaF4 doped PEO polymer electrolyte films. J. Polym. Res., 2007, vol. 14, pp. 283–290.

56. Patrik Johansson P., Gejji S. P., Tegenfeldt J., Lindgren J. The imide ion: potential energy surface and geometries. Electrochim. Acta, 1998, vol. 43, pp. 1375–1379.

57. Chu P. P., Reddy M. J., Kao H. M. Novel composite polymer electrolyte comprising mesoporous structured SiO2 and PEO / Li. Solid State Ionics, 2003, vol. 156, pp. 141–147.

58. Hashmi S. A., Kumar A., Maurya K. K., Chandra S. Proton-conducting polymer electrolyte. I. The polyethylene oxide + NH4ClO4 system. J. Phys. D: Appl. Phys., 1990, vol. 23, pp. 1307–1314.

59. Reddy M. J., Chu P. P. Optical microscopy and conductivity of poly(ethylene oxide) complexed with KI salt. Electrochim. Acta, 2001, vol. 47, pp. 1189–1196.

60. Hodge R. M., Edward G. H., Simon G. P. Water absorption and states of water in semicrystalline poly(vinyl alcohol) films. Polymer, 1996, vol. 37, pp. 1371–1376.

61. Reddy M. J., Sreekanth T., Subba Rao U. V., Conductivity and parametric studies of a (PEO + (glass)(15Na2O–15NaF–70B2O3)) cell. J. Power Sources, 1998, vol. 76, pp. 30–35.

62. Maurya K. K., Srivastava N., Hashmi S. A., Chandra S. Proton conducting polymer electrolyte: II poly ethylene oxide + NH4I system. J. Materials Science, 1992, vol. 27, pp. 6357–6364.

63. Sreepathi Rao S., Reddy M. J., Narsaiah E. L., Subba Rao U. V. Development of electrochemical cells based on (PEO + NaYF4) and (PEO + KYF4) polymer electrolytes. Mat. Sci and Eng. B, 1995, vol. 173, pp. 173–177.

64. Osada I., de Vries H., Scrosati B., Passerini S. Ionic-Liquid-Based Polymer Electrolytes for Battery Applications. Angew. Chem. Intern. Ed., 2016, vol. 55, pp. 500–513.

65. Lu J., Yan F., Texter J. Advanced applications of ionic liquids in polymer science. Progress in Polymer Science, 2009, vol. 34, pp. 431–448.

66. Ye Y.-S., Rick J., Hwang B.-J. Ionic Liquid Polymer Electrolytes. J. Mater. Chem. A, 2013, vol. 1, pp. 2719–2743.

67. Lee S., Park, S.-J., Kim, S. Effect of addition of 1-butyl-3-methylimidazolium thiocyanate on conductivity of Na-containing polymer electrolyte. Research on Chemical Intermediates, 2017, vol. 43, pp. 5403–5411.

68. Song S. F., Kotobuki M., Zheng F., Xu C., Savilov S. V., Hu N., Lu L., Wang Y., Li W. D. Z. A hybrid polymer / oxide / ionic-liquid solid electrolyte for Na-metal batteries. J. Mater. Chem. A, 2017, vol. 5, pp. 6424–6431.

69. Zhou D., Liu R. L., Zhang J., Qi X. G., He Y. B., Li B. H., Yang Q. H., Hu Y. S., Kang F. Y. In situ synthesis of hierarchical poly(ionic liquid)-based solid electrolytes for high-safety lithium-ion and sodium-ion batteries. Nano Energy, 2017, vol. 33, pp. 45–54.

70. Qi X. G., Ma Q., Liu L. L., Hu Y. S., Li H., Zhou Z. B., Huang X. J., Chen L. Q. Sodium Bis(fluorosulfonyl)imide / Poly(ethylene oxide) Polymer Electrolytes for Sodium-Ion Batteries. Chemelectrochem., 2016, vol. 3, pp. 1741–1745.

71. Lewandowski A., Swiderska A. New composite solid electrolytes based on a polymer and ionic liquids. Solid State Ionics, 2004, vol. 169, pp. 21–24.

72. Singh B., Sekhon S. S. Polymer electrolytes based on room temperature ionic liquid: 2,3-dimethyl-1-octylimidazolium triflate. J. Phys. Chem. B, 2005, vol. 109, pp. 16539–16543.

73. Mohd Noor Zairi Mohd Sapri, Azizah Hanom Ahmad, Mohd Muzamir Mahat. Thermal Analysis of 1-Ethyl-3-Methylimidazolium Trifluoromethanesulfonate Ionic Liquid to PEO-NaCF3SO3 Polymer Electrolyte. Solid State Phenomena, 2017, vol. 268, pp. 338–342.

74. Greenbaum S. G., Pak Y. S., Wintersgill M. C., Fontanella J. J., Schultz J. W., Andeen C. G. NMR, DSC, DMA, and High Pressure Electrical Conductivity Studies in PPO Complexed with Sodium Perchlorate. J. Electrochem. Soc., 1988, vol. 135, pp. 235–238.

75. Osman Z., Md Isa K. B., Ahmad A., Othman L. A comparative study of lithium and sodium salts in PAN-based ion conducting polymer electrolytes. Ionics, 2010, vol. 16, pp. 431–435.

76. Jyothi N. K., Kumar K. V., Sundari G. S., Murthy P. N. Ionic conductivity and battery characteristic studies of a new PAN-based Na+ ion conducting gel polymer electrolyte system. Indian J. Phys., 2016, vol. 90, pp. 289–296 

77. Vignarooban K., Badam P., Dissanayake M. A. K. L., Ravirajan P., Kannan A. M. Poly-acrylonitrile-based gel-polymer electrolytes for sodium-ion batteries. Ionics, 2017, vol. 23, pp. 2817–2822.

78. Hamisu A., Celik S. U. Poly(AN-co-PEGMA) / hBN / NaClO4 composite electrolytes for sodium ion battery. E-Polymers, 2017, vol. 17, pp. 507–515.

79. Bhargav P. B., Mohan V. M., Sharma A. K., Narasimha Rao V. V. R. Structural and electrical studies of sodium iodide doped poly(vinyl alcohol) polymer electrolyte films for their application in electrochemical cells. Ionics, 2007, vol. 13, pp. 173–178.

80. Bhargav P. B., Mohan V. M., Sharma A. K., Narasimha Rao V. V. R. Structural, Electrical and Optical Characterization of Pure and Doped Poly(Vinyl Alcohol) (PVA) Polymer Electrolyte Films. Intern. J. Polymeric Materials, 2007, vol. 56, pp. 579–591.

81. Bhargav P. B., Mohan V. M., Sharma A. K., Narasimha Rao V. V. R. Structural and electrical properties of pure and NaBr doped poly (vinyl alcohol) (PVA) polymer electrolyte films for solid state battery applications. Ionics, 2007, vol. 13, pp. 441–446.

82. Bhargav P. B., Mohan V. M., Sharma A. K., Narasimha Rao V. V. R. Investigations on electrical properties of (PVA:NaF) polymer electrolytes for electrochemical cell applications. Current Applied Physics, 2009, vol. 9, pp. 165–171.

83. Badr S., Sheha E., Bayomi R. M., El-Shaarawy M. G. Structural and electrical properties of pure and H2SO4 doped (PVA)0.7(NaI)0.3 solid polymer electrolyte. Ionics, 2010, vol. 16, pp. 269–275.

84. Prajapati G. K., Gupta P. N. Comparative study of the electrical and dielectric properties of PVA–PEG–Al2O3–MI (M = Na, K, Ag) complex polymer electrolytes. Physica B, 2011, vol. 406, pp. 3108–3113.

85. Ramamohan K., Achari V. B. S., Sharma A. K., Lu X. Y. Electrical and structural characterization of PVA / PEG polymer blend electrolyte films doped with NaClO4. Ionics, 2015, vol. 21, pp. 1333–1340.

86. Aziz S. B., Abdullah O. G., Rasheed M. A. Structural and electrical characteristics of PVA:NaTf based solid polymer electrolytes: role of lattice energy of salts on electrical DC conductivity. J. Mater. Sci.: Materials in Electronics, 2017, vol. 28, pp. 12873–12884.

87. Abdullah O. G., Aziz S. B., Saber D. R., Abdullah R. M., Hanna R. R., Saeed S. R. Characterization of polyvinyl alcohol film doped with sodium molybdate as solid polymer electrolytes. J. Mater. Sci.: Materials in Electronics, 2017, vol. 28, pp. 8928–8936.

88. Naresh Kumar K., Sreekanth T., Jaipal Reddy M., Subba Rao U. V. Study of transport and electrochemical cell characteristics of PVP:NaClO3 polymer electrolyte system. J. Power Sources, 2001, vol. 101, pp. 130–133.

89. Subba Reddy C. V., Jin A. P., Zhu Q. Y., Mai L. O., Chen W. Preparation and characterization of (PVP + NaClO4) electrolytes for battery applications. Eur. Phys. J. E: Soft Matter Biol. Phys., 2006, vol. 19, pp. 471–476.

90. Subba Rao C. V., Ravi M., Raja V., Bhargav P. B., Sharma A. K., Narasimha Rao V. V. R. Preparation and characterization of PVP-based polymer electrolytes for solid-state battery applications. Iran Polym. J., 2012, vol. 21, pp. 531–536.

91. Kiran Kumar K., Ravi M., Pavani Y., Bhavani S., Sharma A. K., Narasimha Rao V. V. R., Investigations on the effect of complexation of NaF salt with polymer blend (PEO / PVP) electrolytes on ionic conductivity and optical energy band gaps. Physica B, 2011, vol. 406, pp. 1706–1712.

92. Duraikkan V., Sultan A. B., Nallaperumal N., Shunmuganarayanan A. Structural, thermal and electrical properties of polyvinyl alcohol / poly(vinyl pyrrolidone)-sodium nitrate solid polymer blend electrolyte. Ionics, 2018, vol. 24, pp. 139–151.

93. Vanitha D., Bahadur S. A., Nallamuthu N., Athimoolam S., Manikandan A. Electrical Impedance Studies on Sodium Ion Conducting Composite Blend Polymer Electrolyte. J. Inorg. Organomet. Polym. and Mater., 2017, vol. 27, pp. 257–265.

94. Subba Reddy Ch.V., Han X., Zhu Q.-Y., Mai L.-Q., Chen W. Conductivity and discharge characteristics of (PVC + NaClO4) polymer electrolyte systems. Eur. Polym. J., 2006, vol. 42, pp. 3114–3120.

95. Ab Rani M. A., Hwang J., Matsumoto K., Hagiwara R. Poly(vinyl chloride) Ionic Liquid Polymer Electrolyte Based on Bis(fluorosulfonyl)Amide for Sodium Secondary Batteries. J. Electrochem. Soc., 2017, vol. 164, pp. H5031–H5035.

96. Abbrent S., Plestil J., Hlavata D., Lindgren J., Tegenfeldt J., Wendsjo Е. Crystallinity and morphology of PVdF–HFP-based gel electrolytes. Polymer, 2001, vol. 42, pp. 1407–1416.

97. Kumar D., Hashmi S. A. Ionic liquid based sodium ion conducting gel polymer electrolytes. Solid State Ionics, 2010, vol. 181, pp. 416–423.

98. Kumar D., Suleman M., Hashmi S. A. Studies on poly(vinylidene fluoride-co-hexafluoropropylene) based gel electrolyte nanocomposite for sodium–sulfur batteries. Solid State Ionics, 2011, vol. 202, pp. 45–53.

99. Yang Y. Q., Chang Z., Li M. X., Wang X. W., Wu Y. P. A sodium ion conducting gel polymer electrolyte. Solid State Ionics, 2015, vol. 269, pp. 1–7.

100. Zhu Y., Yang Y., Fu L., Wu Y. A porous gel-type composite membrane reinforced by nonwoven: promising polymer electrolyte with high performance for sodium ion batteries. Electrochim. Acta, 2017, vol. 224, pp. 405–411.

101. Velez J. F., Alvarez L. V., del Rio C., Herradon B., Mann E., Morales E. Imidazolium-based Mono and Dicationic Ionic Liquid Sodium Polymer Gel Electrolytes. Electrochim. Acta, 2017, vol. 241, pp. 517–525.

102. Hashmi S. A., Bhat M. Y., Singh M. K., Sundaram N. T. K., Raghupathy B. P. C., Tanaka H. Ionic liquid-based sodium ion-conducting composite gel polymer electrolytes: effect of active and passive fillers. J. Solid State Electrochem., 2016, vol. 20, pp. 2817–2826.

103. Kumar D., Hashmi S. A. Ion transport and ion–filler-polymer interaction in poly(methyl methacrylate)-based, sodium ion conducting, gel polymer electrolytes dispersed with silica nanoparticles. J. Power Sources, 2010, vol. 195, pp. 5101–5108.

104. Pandey G. P., Agrawal R. C., Hashmia S. A. Magnesium ion-conducting gel polymer electrolytes dispersed with nanosized magnesium oxide. J. Power Sources, 2009, vol. 190, pp. 563–572.

105. Sharma J. P., Sekhon S. S. Nanodispersed polymer gel electrolytes: Conductivity modification with the addition of PMMA and fumed silica. Solid State Ionics, 2007, vol. 178, pp. 439–445.

106. Pandey G. P., Hashmi S. A., Agrawal R. C. Hot-press synthesized polyethylene oxide based proton conducting nanocomposite polymer electrolyte dispersed with SiO2 nanoparticles. Solid State Ionics, 2008, vol. 179, iss. 15–16, pp. 543–549.

107. Gao H., Guo B., Song J., Park K., Goodenough J. B. A Composite Gel–Polymer / Glass–Fiber Electrolyte for Sodium-Ion Batteries. Adv. Energy Mater., 2015, vol. 5, article no. 1402235.

108. Kim J. I., Choi Y., Chung K. Y., Park J. H. A Structurable Gel-Polymer Electrolyte for Sodium Ion Batteries. Adv. Func. Mater., 2017, vol. 27, article no. 1701768.

109. Janakiraman S., Surendran A., Ghosh S., Anandhan S., Venimadhav A. Electroactive poly(vinylidene fluoride) fluoride separator for sodium ion battery with high coulombic efficiency. Solid State Ionics, 2016, vol. 292, pp. 130–135.

110. Pan Q., Li Z., Zhang W., Zeng D., Sun Y., Cheng H. Single ion conducting sodium ion batteries enabled by a sodium ion exchanged poly(bis(4-carbonyl benzene sulfonyl)imide-co-2,5-diaminobenzesulfonic acid) polymer electrolyte. Solid State Ionics, 2017, vol. 300, pp. 60–66.

111. Mohd Noor S. A., Yoon H., Forsyth M., MacFarlane D. R. Gelled ionic liquid sodium ion conductors for sodium batteries. Electrochim. Acta, 2015, vol. 169, pp. 376–381.

112. Xue Y., Li X., Quesnel D. J. Electrochemical and Mechanical Properties of Sodium-Ion Conducting Cross-Linked Polymer Gel Electrolyte. Intern. J. Electrochem. Sci., 2017, vol. 12, pp. 10674–10686.

113. Xue Y., Quesnel D. J. Synthesis and electrochemical study of sodium ion transport polymer gel electrolytes. RSC Adv., 2016, vol. 6, pp. 7504–7510.

114. Gao H. C., Zhou W. D., Park K., Goodenough J. B. A Sodium-Ion Battery with a Low-Cost Cross-Linked Gel-Polymer Electrolyte. Adv. Energy Mater., 2016, vol. 6, article no. 1600467.

115. Noor M. M., Buraidah M. H., Careem M. A., Majid S. R., Arof A. K. An optimized poly(vinylidene fluoride-hexafluoropropylene)–NaI gel polymer electrolyte and its application in natural dye sensitized solar cells. Electrochim. Acta, 2014, vol. 121, pp. 159–167.

116. Sequeira C. A. C., Plancha M. J. C., Araujo L. P. S. Conductivity studies on solid polymer electrolytes. J. Phys. IV France, 1994, vol. 4, no. C1, pp. 17–35. DOI: 10.1051/jp4:1994102

117. Zhang J. J., Wen H. J., Yue L. P., Chai J. C., Ma J. Hu P., Ding G. L., Wang Q. F., Liu Z. H., Cui G. L. In situ Formation of Polysulfonamide Supported Poly(ethylene glycol) Divinyl Ether Based Polymer Electrolyte toward Monolithic Sodium Ion Batteries. Small, 2017, vol. 13, iss. 2, article no. 1601530.

118. Zhang H., Shen P. K. Recent development of polymer electrolyte membranes for fuel cell. Chem. Rev., 2012, vol. 112, pp. 2780–2832.

119. Tang Q., Shan Z., Wang L., Qin X., Zhu K., Tian J., Liu. X. Nafion coated sulfur-carbon electrode for high performance lithium-sulfur batteries. J. Power Sources, 2014, vol. 246, pp. 253–259.

120. Jin Z., Xie K., Hong X., Hu Z., Liu X. Application of lithiated Nafion ionomer film as functional separator for lithium sulfur cells. J. Power Sources, 2013, vol. 218, pp. 163–167.

121. Cai Z., Liu Y., Liu S., Li L., Zhang Y. High performance of lithium-ion polymer battery based on non-aqueous lithiated perfluorinated sulfonic ion-exchange membranes. Energy Environ Sci., 2012, vol. 5, pp. 5690–5693.

122. Liu Y., Cai Z., Tan L., Li L. Ion exchange membranes as electrolyte for high performance Li-ion batteries. Energy Environ Sci., 2012, vol. 5, pp. 9007–9013.

123. Liu Y., Tan L., Li L. Ion exchange membranes as electrolyte to improve high temperature capacity retention of LiMn2O4 cathode lithium-ion batteries. Chem. Commun., 2012, vol. 48, pp. 9858–9860.

124. Liang H., Qiu X., Zhang S., Zhu W., Chen L. Study of lithiated Nafion ionomer for lithium batteries. J. Appl. Electrochem., 2004, vol. 34, pp. 1211–1214.

125. Cao C., Wang H., Liu W., Liao X., Li L. Nafion membranes as electrolyte and separator for sodium-ion battery. Intern. J. Hydrogen Energy, 2014, vol. 39, pp. 16110–16115.

126. Kreuer K.-D., Wohlfarth A., Araujo C. C., Fuchs A., Maier J. Single Alkaline-Ion (Li+, Na+) Conductors by Ion Exchange of Proton-Conducting Ionomers and Polyelectrolytes. ChemPhysChem, 2011, vol. 12, pp. 2558–2560.