For citation:
Istomina A. S., Bushkova O. V. Polymer Binders for the Electrodes of Lithium Batteries. Part 1. Polyvinylidene Fluoride, its Derivatives and Other Commercialized Materials. Electrochemical Energetics, 2020, vol. 20, iss. 3, pp. 115-?. DOI: 10.18500/1608-4039-2020-20-3-115-131, EDN: IJOMIX
Polymer Binders for the Electrodes of Lithium Batteries. Part 1. Polyvinylidene Fluoride, its Derivatives and Other Commercialized Materials
The current situation in technology and developments in the field of polymer binders for composite electrodes of lithium electrochemical systems are discussed. A wide range of synthetic and natural polymers used for this purpose is considered. Emphasis is placed on commercially available materials, which form aqueous solutions or dispersions. The advantages of multifunctional polymer binders are demonstrated. The need for individual selection of a binder for a given active material to achieve and maintain high capacitive and power characteristics of the batteries, as well as to ensure their long-term safe cycling, is shown.
1. Ding Y., Cano Z. P., Yu A., Lu J., Chen Z. Automotive Li-Ion batteries : Current status and future perspectives. Electrochem. Energ. Rev., 2019, vol. 2, no. 1, pp. 1–28. DOI: https://www.doi.org/10.1007/s41918-018-0022-z
2. Kim T., Song W., Son D.-Y., Ono L. K., Qi Y. Lithium-ion batteries : outlook on present, future, and hybridized technologies. J. Mater. Chem. A., 2019, vol. 7, no. 7, pp. 2942–2964. DOI: https://www.doi.org/10.1039/c8ta10513h
3. Schmuch R., Wagner R. Horpel G., Placke T., Winter M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy, 2018, vol. 3, no. 4, pp. 267–278. DOI: https://www.doi.org/10.1038/s41560-018-0107-2
4. Choi J. W., Aurbach D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater., 2016, vol. 1, no. 4, pp. 1–16. DOI: https://www.doi.org/10.1038/natrevmats.2016.13
5. Schipper F., Aurbach D. A brief review : Past, present and future of lithium ion batteries. Russ. J. Electrochem., 2016, vol. 52, no. 12, pp. 1095–1121. DOI: https://www.doi.org/10.1134/S1023193516120120
6. Xu K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev., 2014, vol. 114, no. 23, pp. 11503–11618. DOI: https://www.doi.org/10.1021/cr500003w
7. Wang Y., Zhong W. H. Development of electrolytes towards achieving safe and highperformance energystorage devices : A review. ChemElectroChem, 2015, vol. 2, no. 1, pp. 22–36. DOI: https://www.doi.org/10.1002/celc.201402277
8. Yarmolenko O. V., Yudina A. V., Ignatova A. A. The state of the art and prospects for the development of electrolyte systems for lithium power sources. Electrochemical Energetics, 2016, vol. 16, no. 4, pp. 155–195 (in Russian). DOI: https://www.doi.org/10.18500/1608-4039-2016-16-4-155-195
9. Kulova T. L., Skundin A. M. The problems of low-temperature lithium-ion batteries. Electrochemical Energetics, 2017, vol. 17, no. 2, pp. 61–88 (in Russian). DOI: https://www.doi.org/10.18500/1608-4039-2017-17-2-61-88
10. Bushkova O. V., Yaroslavtseva T. V., Dobrovolsky Yu. A. New lithium salts in electrolytes for lithium-ion batteries (Review). Russ. J. Electrochem., 2017, vol. 53, no. 7, pp. 677–699. DOI: https://www.doi.org/10.1134/S1023193517070035
11. Jow T. R., Xu K., Borodin O., Ue M., eds. Electrolytes for lithium and lithium-ion batteries. New York, Springer, 2014. 476 p. DOI: https://www.doi.org/10.1007/978-1-4939-0302-3
12. Spotnitz R. Separators for Lithium-Ion Batteries. In: C. Daniel, Besenhard J. O., eds. Handbook of Battery Materials. 2nd ed. Wiley-VCH Verlag, 2011, pp. 693–717. DOI: https://www.doi.org/10.1002/9783527637188.ch19 Available at: https://onlinelibrary.wiley.com/doi/10.1002/9783527637188.ch19
13. Zhang S. S. A review on the separators of liquid electrolyte Li-ion batteries. J. Power Sources, 2007, vol. 164, pp. 351–364. DOI: https://www.doi.org/10.1016/j.jpowsour.2006.10.065
14. Deng N., Kang W., Liu Y., Ju J., Wu D., Li L., Hassan B. S., Cheng B. A review on separators for lithiumsulfur battery : progress and prospects. J. Power Sources, 2016, vol. 331, pp. 132–155. DOI: https://www.doi.org/10.1016/j.jpowsour.2016.09.044
15. Nestler T., Schmid R. Munchgesang W., Bazhenov V., Schilm J., Leisegang T., Meyer D. C. Separators – Technology review : Ceramic based separators for secondary batteries. AIP Conf. Proc., 2014, vol. 1597, no. 1, pp. 155–184. DOI: https://www.doi.org/10.1063/1.4878486
16. Arora P., Zhang Z. Battery separators. Chem. Rev., 2004, vol. 104, no. 10, pp. 4419–4462. DOI: https://www.doi.org/10.1021/cr020738u
17. Chen H., Ling M., Hencz L., Ling H. Y., Li G., Lin Z., Liu G., Zhang S. Exploring chemical, mechanical, and electrical functionalities of binders for advanced energy-storage devices. Chem. Rev., 2018, vol. 118, no. 18, pp. 8936–8982. DOI: https://www.doi.org/10.1021/acs.chemrev.8b00241
18. Lestriez B. Functions of polymers in composite electrodes of lithium ion batteries. C. R. Chim., 2010, vol. 13, no. 11, pp. 1341–1350. DOI: https://www.doi.org/10.1016/j.crci.2010.01.018
19. Ma Y., Ma J., Cui G. Small things make big deal : Powerful binders of lithium batteries and post-lithium batteries. Energy Storage Mater., 2019, vol. 20, pp. 146–175. DOI: https://www.doi.org/10.1016/j.ensm.2018.11.013
20. Chou S.-L., Pan Y., Wang J. Z., Liu H. K., Dou S. X. Small things make a big difference : binder effects on the performance of Li and Na batteries. Phys. Chem. Chem. Phys. 2014, vol. 16, no. 38, pp. 20347–20359. DOI: https://www.doi.org/10.1039/C4CP02475C
21. Nagai A. Applications of PVdF-related materials for lithium-ion batteries. In: M. Yoshio, R. J. Brodd, A. Kozawa, eds. Lithium-ion batteries : Science and technologies. New York, Springer, 2009, pp. 155–162. DOI: https://www.doi.org/10.1007/978-0-387-34445-4
22. Yamamoto H., Mori H. SBR binder (for negative electrode) and ACM binder (for positive electrode). In: M. Yoshio, R. J. Brodd, A. Kozawa, eds. Lithium-ion batteries : Science and technologies. New York, Springer, 2009, pp. 163–180. DOI: https://www.doi.org/10.1007/978-0-387-34445–4
23. Mazouzi D., Karkar Z., Hernandez C. R., Manero P. J., Guyomard D., Roue L., Lestriez B. Critical roles of binders and formulation at multiscales of silicon-based composite electrodes. J. Power Sources, 2015, vol. 280, pp. 533–549. DOI: https://www.doi.org/10.1016/j.jpowsour.2015.01.140
24. Choi N.-S., Ha S.-Y., Lee Y., Jang J. Y., Jeong M.-H., Shin W. C., Ue M. Recent progress on polymeric binders for silicon anodes in lithium-ion batteries. J. Electrochem. Sci. Technol., 2015, vol. 6, no. 2, pp. 35–49. DOI: https://www.doi.org/10.5229/JECST.2015.6.2.35
25. Tager А. А. Fizikokhimiya polimerov [Physical Chemistry of Polymers]. Moscow, Mir Publ., 1978. 544 p. (in Russian).
26. Semchikov Y. D. Vysokomolekuljarnye soedinenija [Polymers]. Moscow, Academia Publ., 2010. 368 p. (in Russian).
27. PVDF electrode binders & separator coatings, 2018. Available at: https://www.extremematerials-arkema.com/export/sites/technicalpolymers\slash. content/medias/downloads/brochures/kynar-brochures/2017-new-kynar-battery-brochure-optimized.pdf (accessed 20 January 2020).
28. High performance binder for electrode. Kyreha KF polymer, 2016. Available at: https://www.kureha.co.jp/en/business/material/pdf/KFpolymer_BD_en.pdf (accessed 20 January 2020).
29. High performance materials for batteries, 2017. Available at: https://www.solvay.com/sites/g/files/srpend221/files/tridion/documents/High-Performance-Materials-for-Batteries_EN.pdf.pdf (accessed 20 January 2020).
30. Styrene-butadiene rubber and polyvinylidene fluoride based binders. Available at: https://www.targray.com/li-ion-battery/anode-materials/binders (accessed 20 January 2020).
31. Zhang S. S., Xu K., Jow T. R. Poly (acrylonitrile-methyl methacrylate) as a non-fluorinated binder for the graphite anode of Li-ion batteries. J. Appl. Electrochem., 2003, vol. 33, no. 11, pp. 1099–1101. DOI: https://www.doi.org/10.1023/A\,:1026225001109
32. Solef PVDF aqueous dispersions for lithium batteries. Available at: https://www.rhodia.com.br/pt/binaries/Solef-PVDF-Aqueous-Dispersions-for-Lithium-Batteries_EN-229550.pdf (accessed 20 January 2020).
33. Water based cathode binder, 2020. Available at: https://www.jsrmicro.be/emerging-technologies/battery-binder/water-based-cathode-binder (accessed 20 January 2020).
34. Binders for lithium ion rechargeable batteries. Available at: http://www.zeon.co.jp/business_e/enterprise/imagelec/battery.html (accessed 20 January 2020).
35. Introduction of LA132 aqueous binder. Available at: http://www.cd-ydl.com/en/index.php?go=product-6.html (accessed 20 January 2020).
36. Introduction of LA133 aqueous binder. Available at: http://www.cd-ydl.com/en/index.php?go=product-8.html (accessed 20 January 2020).
37. Wu Q., Ha S., Prakash J., Dees D. W., Lu W. Investigations on high energy lithium-ion batteries with aqueous binder. Electrochim. Acta, 2013, vol. 114, pp. 1–6. DOI: https://www.doi.org/10.1016/j.electacta.2013.09.068
38. Tanabe T., Gunji T., Honma Y., Miyamoto K., Tsuda T., Mochizuki Y., Kaneko S., Ugawa S., Lee H., Ohsaka T., Matsumoto F. Preparation of water-resistant surface coated high-voltage LiNi0.5Mn1.5O4 cathode and its cathode performance to apply a water-based hybrid polymer binder to Li-Ion batteries. Electrochim. Acta, 2017, vol. 224, pp. 429–438. DOI: https://www.doi.org/10.1016/j.electacta.2016.12.064
39. Zhong H., Sun M., Li Y., He J., Yang J., Zhang L. The polyacrylic latex : an efficient water-soluble binder for LiNi1/3Co1/3Mn1/3O2 cathode in li-ion batteries. J. Solid State Electrochem., 2016, vol. 20, no. 1, pp. 1–8. DOI: https://www.doi.org/10.1007/s10008-015-2967-8
40. Su M., Liu S., Wan H., Dou A., Liu K., Liu Y. Effect of binders on performance of Si/C composite as anode for Li-ion batteries. Ionics, 2019, vol. 25, no. 5, pp. 2103–2109. DOI: https://www.doi.org/10.1007/s11581-018-2611-6
41. Wang W., Yue X., Meng J., Wang X., Zhou Y., Wang Q., Fu Z. Comparative study of water-based LA133 and CMC/SBR binders for sulfur cathode in advanced lithiumsulfur batteries. J. Phys. Chem. C, 2019, vol. 123, no. 1, pp. 250–257. DOI: https://www.doi.org/10.1021/acs.jpcС.8b10736
42. Dikshit A. K., Nandi A. K. Thermoreversible gelation of poly (vinylidene fluoride) in diesters : Influence of intermittent length on morphology and thermodynamics of gelation. Macromolecules, 2000, vol. 33, no. 7, pp. 2616–2625. DOI: https://www.doi.org/10.1021/ma990898g
43. Wachtler M., Wagner M. R., Schmied M., Winter M., Besenhard J. O. The effect of the binder morphology on the cycling stability of Li-alloy composite electrodes. J. Electroanal. Chem., 2001, vol. 510, no. 1–2, pp. 12–19. DOI: https://www.doi.org/10.1016/S0022-0728(01)00532-0
44. Yoo M., Frank C. W., Mori S. Interaction of poly(vinylidene fluoride) with graphite particles. 1. Surface morphology of a composite film and its relation to processing parameters. Chem. Mater., 2003, vol. 15, no. 4, pp. 850–861. DOI: https://www.doi.org/10.1021/cm0209970
45. Yoo M., Frank C. W., Mori S., Yamaguchi S. Interaction of poly(vinylidene fluoride) with graphite particles. 2. Effect of solvent evaporation kinetics and chemical properties of PVDF on the surface morphology of a composite film and its relation to electrochemical performance. Chem. Mater., 2004, vol. 16, no. 10, pp. 1945–1953. DOI: https://www.doi.org/10.1021/cm0304593
46. Muller M., Pfaffman L., Jaiser S., Baunach M., Trouillet V., Scheiba F., Scharfer P., Schabel W., Baue W. Investigation of binder distribution in graphite anodes for lithium-ion batteries. J. Power Sources, 2017, vol. 340, pp. 1–5. DOI: https://www.doi.org/10.1016/j.jpowsour.2016.11.051
47. Park C.-K., Kakirde A., Ebner W., Manivannan V., Chai C., Ihm D.-J., Shim Y.-J. High temperature stable lithium-ion polymer battery. J. Power Sources, 2001, vol. 97–98, pp. 775–778. DOI: https://www.doi.org/10.1016/S0378-7753(01)00606-1
48. Goren A., Costa C. M., Silva M. M., Lanceros-Mendez S. Influence of fluoropolymer binders on the electrochemical performance of C-LiFePO4 based cathodes. Solid State Ionics, 2016, vol. 295, pp. 57–64. DOI: https://www.doi.org/10.1016/j.ssi.2016.07.012
49. Jarvis C. R., Macklin W. J., Macklin A. J., Mattingley N. J., Kronfli E. Use of grafted PVdF-based polymers in lithium batteries. J. Power Sources, 2011, vol. 97, pp. 664–666. DOI: https://www.doi.org/10.1016/S0378-7753(01)00696-6
50. Zheng M., Fu X., Wang Y., Reeve J., Scudiero L., Zhong W.-H. Poly(vinylidene fluoride)-based blends as new binders for lithium-ion batteries. ChemElectroChem, 2018, vol. 5, no. 16, pp. 2288–2294. DOI: https://www.doi.org/10.1002/celc.201800553
51. Wang Y., Zhang L., Qu Q., Zhang J., Zheng H. Tailoring the interplay between ternary composite binder and graphite anodes toward high-rate and long-life Li-ion batteries. Electrochim. Acta, 2016, vol. 191, pp. 70–80. DOI: https://www.doi.org/10.1016/j.electacta.2016.01.025