ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Burchakov A. V., Emelyanova U. A., Garkushin I. K., Дворянова Е. М., Финогенов А. А. Phase complex modeling and experimental identification of the compositions of low-melting electrolyte mixtures in the stable triangle LiF-NaF-KCl of the quaternary reciprocal system Li+ ,Na+ ,K+ ||F− ,Cl−. Electrochemical Energetics, 2024, vol. 24, iss. 2, pp. 103-112. DOI: 10.18500/1608-4039-2024-24-2-103-112, EDN: AICCCQ

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 0)
Language: 
Russian
Article type: 
Article
UDC: 
544.1+544.015.3+544.018.4
EDN: 
AICCCQ

Phase complex modeling and experimental identification of the compositions of low-melting electrolyte mixtures in the stable triangle LiF-NaF-KCl of the quaternary reciprocal system Li+ ,Na+ ,K+ ||F− ,Cl−

Autors: 
Burchakov Alexander Vladimirovich, Samara State Technical University
Emelyanova Uliana Alexandrovna, Samara State Technical University
Garkushin Ivan Kirillovich, Samara State Technical University
Abstract: 

Alkali metal halides are used as heat-storing materials, electrolytes for chemical power sources and solvents for inorganic substances. Using three-dimensional vector graphics software, a 3D model of the phase equilibrium states of the quasi-ternary system LiF-NaF-KCl, which is a stable triangle of the four-component reciprocal system Li+ ,Na+ ,K+ ||F-,Cl, was constructed. Based on the 3D model, the polythermal and isothermal sections and the polytherm of crystallization of the phases were constructed for the first time. The stable nature of the LiF-NaF-KCl triangle is confirmed by thermodynamic calculations for several temperatures of interaction of mixtures of the substances being a part of the unstable LiCl-NaF-KF triangle. The crystallization polytherm allows us to select mixture compositions in the temperature range from 590 to 650 and from 590 to 700°C for practical use as molten electrolytes for mid-temperature chemical current sources.

Acknowledgments: 
The work was supported by the Ministry of Science and Higher Education of the Russian Federation (theme No. FSSE-2023-0003) as part of the state task of the Samara State Technical University
Reference: 
  1. 1. Vasina N. A., Gryzlova E. S., Shaposhnikova S. G. Teplofizicheskie svoistva mnogokomponentnykh solevykh sistem [Thermophysical properties of multicomponent salt systems]. Moscow, Khimiia, 1984. 112 p. (in Russian).
  2. Cherneeva L. I., Rodionova E. K., Martynova N. M. Ental’piia plavleniia solevykh evtektik [The enthalpy of melting of salt eutectic]. Obzory po teplofizicheskim svoistvam veshchestv [Reviews on the thermophysical properties of substances]. Moscow, Institute of High Temperatures of the USSR Academy of Sciences Publ., 1980, no. 3 (23). 56 p. (in Russian).
  3. Ma L., Zhang C., Wu Yu., Lu Y. Comparative review of different influence factors on molten salt corrosion characteristics for thermal energy storage. Solar Energy Materials and Solar Cells, 2012, vol. 235, article no. 111485. https://doi.org/10.1016/j.solmat.2021.111485
  4. Caraballo A., Galán-Casado S. Caballero Á., Serena S. Molten Salts for Sensible Thermal Energy Storage: A Review and an Energy Performance Analysis. Energies, 2021, vol. 14, article no. 1197. 15 p. https://doi.org/10.3390/en14041197
  5. Bauer T., Odenthal Ch., Bonk A. Molten Salt Storage for Power Generation. Chemie Ingenieur Technic, 2021, vol. 93, no. 4, pp. 534–546. https://doi.org/10.1002/cite.202000137
  6. Yuan K., Shi J., Aftab W., Qin M., Usman A., Zhou F., Lv Y., Gao S., Zou R. Engineering the thermal conductivity of functional phase-change materials for heat energy conversion, storage, and utilization. Advanced Functional Materials, 2020, vol. 30, article no. 1904228. https://doi.org/10.1002/adfm.201904228
  7. Babaev B. D. High-temperature phase-shifting heat storage materials based on the Li,Na,Ca,Ba∥F,MoO4 system and their properties. High Temp., 2014, vol. 52, no. 4, pp. 541. https://doi.org/10.1134/S0018151X14040038
  8. Verdieva Z. N., Verdiev N. N., Musaeva P. A. Sirieva Ya. N. Thermal accumulation based on eutectic salt systems made of halides and sulfates of alkaline earth metals. Khimicheskaia termodinamika i kinetika: sb. materialov XI Mezhdunar. nauch. konf. [Chemical Thermodynamics and Kinetics. Collection of materials of the XI International Scientific Conference]. Veliky Novgorod, Novgorod State University named after Yaroslav the Wise Publ., 2021, pp. 51 (in Russian).
  9. Khimicheskie istochniki toka: spravochnik. Pod. red. N. V. Korovina, A. M. Skundina [Korovin N. V., Skundin A. M., eds. Chemical current sources: A reference book]. Moscow, MEI Publ., 2003. 740 p. (in Russian).
  10. Korovin N. V. Elektrokhimicheskaia energetika [Electrochemical energy]. Moscow, Energoatomizdat, 1991. 264 p. (in Russian).
  11. Batalov N. N. High-temperature electrochemical energy. Successes and challenges. XI Mezhdunar. konf. po fiz. khimii i elektrokhimii rasplavlennykh i tverdykh elektrolitov: Tez. dokl. [XI International Conference on Physics. Chemistry and Electrochemistry of Molten and Solid Electrolytes: abstracts of reports]. Ural Branch of the Russian Academy of Sciences Publ., 1998, vol. 1, pp. 3–4 (in Russian).
  12. Masset P., Guidotti R. A. Review Thermal activated (thermal) battery technology Part II. Molten salt electrolytes. J. Power Sources, 2007, vol. 164, pp. 397– 414. https://doi.org/10.1016/j.jpowsour.2006.10.080
  13. Khokhlov V. A. On the Classification of Molten Salt Electrolytes. Russian Metallurgy (Metally), 2010, vol. 2010, no. 2, pp. 96–104. https://doi.org/10.1134/S0036029510020047
  14. Blinkin B. L., Novikov V. N. Zhidkosolevye iadernye reaktory [Liquid salt nuclear reactors]. Moscow, Atomizdat, 1978. 111 p. (in Russian).
  15. Delimarskii Yu. K., Barchuk L. P. Prikladnaia khimiia ionnykh rasplavov [Applied chemistry of ionic melts]. Kiev, Naukova dumka, 1988. 192 p. (in Russian).
  16. Babikov L. G., Baranov M. V., Beketov A. R., Vasin B. D., Volkovich V. A., Desyatnik V. N., Kazantsev G. N., Katyshev S. F., Raspopin S. P., Skibav O. V., Trifonov I. I., Trifonov K. I. Katyshev Sergei Filippovich. Toplivo energeticheskogo reaktora na bystrykh neitronakh s aktivnoi zonoi v vide solevogo rasplava dlia konversii toriia-232 v uran-233 [A fast neutron fuel and energy reactor with a salt melt core for the conversion of thorium232 to uranium-233], Patent RF no. 2577756, 2016 (in Russian).
  17. Trifonov K. I., Zabotin I. F., Katyshev S. F., Nikiforov A. F. Electrical conductivity of melts of mixtures of gadolinium trichloride with sodium and potassium chlorides. Rasplavy [Melts], 2017, no. 6, pp. 512–515 (in Russian).
  18. Trifonov K. I., Zabotin I. F., Krotov V. E., Nikiforov A. F. Density and molar volume of molten GdCl3–NaCl and GdCl3–KCl binary mixtures. Russian metallurgy (Metally), 2019, no. 8, pp. 838–841.
  19. Garkushin I. K. The application of salt, oxidesalt and oxide compositions in technology. In: Termicheskii analiz i fazovye ravnovesiia [Thermal analysis and phase equilibria]. Perm, Perm State University Publ., 1984, pp. 101–111 (in Russian).
  20. Delimarskii Yu. K. Khimiia ionnykh rasplavov [Chemistry of ionic melts]. Kiev, Nauk. dumka, 1980. 323 p. (in Russian).
  21. Prisiazhnyi V. D., Kirillov S. A. Chemical processes in molten salt media. Ionnye rasplavy [Ionic melts], 1975, no. 3, pp. 82–90 (in Russian).
  22. Khokhlov V., Ignatiev V., Afonichkin V. Evaluating physical properties of molten salt reactor fluoride mixtures. Journal of Fluorine Chemistry, 2009, vol. 130, no. 1, pp. 30–37.
  23. Sangster J., Pelton A. D. Thermodynamic calculation of phase diagrams of 60 common-ion ternary systems with ordinary ions containing cations Li, Na, K, Rb, Cs and anions F, Cl, Br, I. J. Phase Equilibria and Diffusion, 1991, vol. 12, iss. 5, pp. 511–537.
  24. Sangster J., Pelton A. D. Phase diagrams and thermodynamic properties of 70 binary alkaline-halide systems containing common ions. J. Phys. Chem. Ref. Data, vol. 1, no. 3, pp. 509–561.
  25. Minchenko V. I., Stepanov V. P. Ionnye rasplavy: uprugie i kalorimetricheskie svoistva [Ionic melts: Elastic and calorimetric properties]. Ekaterinburg, Ural Branch of the Russian Academy of Sciences Publ., 2008. 340 p. (in Russian).
  26. Janz G. J. Thermodynamic and Transport Proptrties for Molten Salts. J. of Physical and Chemical Reference Data, 1988, vol. 17, supplement no. 2. 319 р.
  27. Garkushin I. K., Kondratiuk I. M., Dvorianova E. M., Danilushkina E. G. Analiz, prognozirovanie i eksperimental’noe issledovanie riadov sistem iz galogenidov shchelochnykh i shchelochnozemel’nykh elementov [Analysis, forecasting and experimental investigation of a series of systems made of halides of alkaline and alkaline earth elements]. Samara, Samara State Technical University Publ., 2007. 148 p. (in Russian).
  28. Burchakov A. V. Modelirovanie fazovogo kompleksa mnogokomponentnykh sistem s uchactiem khromatov i galogenidov shchelochnykh metallov: dis. kand. khim. nauk [Modeling of the phase complex of multicomponent systems involving chromates and alkali metal halides]. Diss. Cand. Sci. (Chem.). Samara, 2016. 195 p. (in Russian).
  29. Ganin N. B. Proektirovanie i prochnostnoi raschet v sisteme KOMPAS-3D V13. 8-e izd., pererab. i dop. [Design and strength calculation in the COMPAS-3D V13. 8th ed., revision. and add.]. Moscow, DMK Press, 2011. 320 p. (in Russian).
  30. Kang J. 3D Stereo spatial phase diagram for typical complex ternary system. J. Kang. Material Sci. & Eng., 2019, vol. 3, iss. 1, pp. 38–40.
  31. Garkushin I. K., Chugunova M. V., Milov S. N. Obrazovanie nepreryvnykh riadov tverdykh rastvorov v troinykh i mnogokomponentnykh solevykh sistemakh [Formation of continuous rows of solid solutions in ternary and multicomponent salt systems]. Ekaterinburg, Ural Branch of the Russian Academy of Sciences Publ., 2011. 140 p. (in Russian).
  32. Termicheskie konstanty veshchestv: spravochnik. Pod red. V. P. Glushko [Glushko V. P., ed. Thermal constants of substances. Guide]. Moscow, VINITI, 1981. Iss. 10, ch. 2. 300 p. (in Russian).
  33. Barin I., Platzki G. Thermochemical data of pure substances. Weinheim, New York, VCH, 1995. 1885 р.
  34. Radishchev V. P. Mnogokomponentnye sistemy [Multicomponent systems]. Moscow, 1963. Dep. v VINITI AN SSSR [Dep. in the VINITI of the USSR Academy of Sciences], № 1516–63. 502 p. (in Russian).
  35. Posypaiko V. I. Metody issledovaniia mnogokomponentnykh sistem [Research methods for multicomponent systems]. Moscow, Nauka, 1978. 255 p. (in Russian).
  36. Posypaiko V. I., Vasina N. A., Gryzlova E. S. Conversion method for the study of multicomponent mutual salt systems. Dokl. AN SSSR [Dokl. USSR Academy of Sciences], 1975, vol. 23, no. 5, pp. 1191–1194 (in Russian).
  37. Kozyreva N. A. Matrices of conversion figures of five-component reciprocal systems of 9 salts. Dokl. RAN, 1992, vol. 325, no. 3, pp. 530–535 (in Russian).
  38. Trunin A. S. Kompleksnaia metodologiia issledovaniia mnogokomponentnykh sistem [Comprehensive methodology for the study of multicomponent systems]. Samara, SamGTU Publ., 1997. 308 p. (in Russian).
  39. Artemov N. A., Chizhov P. S. Prakticheskoe rukovodstvo po vypolneniju rentgenofazovogo analiza mineralov s ispol’zovaniem programmnykh kompleksov Crystallographica Search–Match i Siroquant [A practical guide to performing X-ray phase analysis of minerals using the Crystallographica Search–Match and Siroquant software packages]. Moscow, Moscow State University Publ., 2009. 52 p. (in Russian).

 

Received: 
10.04.2024
Accepted: 
10.06.2024
Published: 
28.06.2024