On the Issue of Heat Emissions in Lithium-fluorocarbon Cells

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).

The power sources of the lithium­-fluorinated carbon electrochemical system often fail to withstand forced discharges because of greater heat emission due to ohmic and polarizing losses, which leads to heating at the best, and to destruction of the element and failure of the equipment at the worst. Heat emission from the cells of the lithium manganese–dioxide system at forced discharges is 2–3 times less than from the similar cells of the lithium–fluorinated carbon system. Therefore, adding some amount of manganese dioxide to the carbon fluoride­based cathode material, it is possible to achieve the necessary reduction in heat emission without substantially reducing the capacity. Some reduction of heat emission is also possible due to rational choice of electrolyte. Keywords: fluorocarbon­lithium cell, manganese–dioxide, discharge characteristics of the cells.


1. Tumanov B. I., Alashkin V. M. Batrakov Yu. A., Fateev S. A. Research, design experience and production of lithium batteries of various destination. Fundamental’nye problemy preobrazovaniya energii v litievyh elektrohim. cistemah : tezisy dokladov IV Mezhdunarodnoj konferencii [Fundamental problems energy conversion in lithium electrochemical systems: abs. doc. IV Int. conf.]. Moscow, 1996, Semenov Institute of Chemical Physics Publ., vol. 2, pp. 197–198 (in Russian).

2. Tumanov B. I., Alashkin V. M. Batrakov Yu. A., Kukushkin A. N., Nikolenko P. I., Fateev S. A. Development of a new power source on based on a unified lithium battery 12FUL-150. Fundamental’nye problemy elektrohim. energetiki : tezisy dokladov IV Mezhdunarodnoj konferencii [Fundamental problems of electrochemical energetics : abs. IV Int. conf.]. Saratov, Izdatel’stvo Saratovskogo universiteta, 1999, pp. 130–131 (in Russian).

3. Romanov V. V. Serebryano-cinkovye akkumulyatory [Silver-zinc batteries]. Moscow, Voenizdat Publ., 1964. 104 p. (in Russian).

4. Kedrenskij I. A., Dmitrenko V. E., Grudyanov I. I. Litievye istochniki toka [Power sources]. Moscow, Energoatomizdat Publ., 1992. 240 p. (in Russian).

5. Bagockij V. S., Skundin A. M. Himicheskie istochniki toka [Chemical power sources]. Moscow, Energoizdat Publ., 1981. 360 p. (in Russian).

6. Khimicheskie istochniki toka: spravochnik. Pod red. N. V. Korovina, A. M. Skundina [N. V. Korovin, A. M. Skundin, eds. Chemical current sources : handbook]. Moscow, Moscow Power Engineering Institute Publ., 2003. 740 p. (in Russian).

7. Selected Values of Chemical Thermodynamic Properties. Institute for Basic Standards National Bureau of Standards, USA, Circular 500. Washington, 1961, part 1, 270-3 Technical Note.

8. Ilchev N., Manev V., Banov B., Momchilov A. Discharge of chemical and electrochemical manganese dioxides in nonaqueous electrolytes. Electrochemistry : Abstracts of 41st Meet. Int. Soc. Prague, 1990, pp. 23.

9. Erejsskaya G. P., Dem’yan V. V., Talanov V. M., Hodarev O. N. Ivanov V. V. Oxide nanocomposites electrode materials of power sources. Fundamental’nye problemy elektrohimicheskoj energetiki : Materialy VI Mezhdunarodnoj konf. [Fundamental problems of electrochemical energetics : abs. VI Int. conf.]. Saratov, Izdatel’stvo Saratovskogo universiteta, 2005, pp. 133–135.

10. Ilchev N. The lithium-manganese dioxide cell. J. Power Sources, 1989, vol. 27, no. 3, pp. 265–269.

11. Ueno K., Watanabe N., Nakajima T. Thermodynamic studies of discharge reactions in Li/CFx elements. J. Fluorine Chem., 1982, vol. 19, pp. 323–332.

12. Mit’kin V. N. Novejshie elektrodnye materialy dlya litievoj himicheskoj energetiki [The latest electrode materials for lithium power sources]. Novosibirsk, Izdatel’stvo “Novosibirskii zavod khimkontsentratov”, 2001. 162 p. (in Russian).

13. Nakajima T., Mabuchi A., Hagiwara R., Watanabe N. Thermodynamic characteristics of fluorocarbon. In : J.-P. Gabano, Z. Takehara, P. Bro, eds. Primary and Secondary Ambient Temperature Lithium Batteries. Pennington, The Electrochem. Soc., 1988, Proceeding Volumes 88–6, pp. 23–29.

14. Sandifer I. R., Suchanski M. R. Electrochemical characteristics of Li/CF batteries and their half-elements. J. Applied Electrochem., 1984, vol. 14, no. 3, pp. 329–340.

15. Crespi A. M., Merrit D. R., Skarstad P. M. Introduction of lithium in-to the structure of manganese dioxide. 5th Int. Meeting on Lithium Batteries. Beijing, 1990, Ext. Abstr. 1C-5, pp. 37–38.

16. Fialkov A. S., Polyakova N. V., Dubasova V. S., Ponomareva T. A., Tyan L. S., Savost’yanova N. A. The structure and properties of fluorocarbon as a cathode material power sources. Sb. tez. dokladov 2 Vsesoyuznoj konferencii po elektrohimicheskoj energetike [Abs. 2nd All-Union. conf. electrochem. power engineering]. Moscow, Moscow Power Engineering Institute Publ., 1984, pp. 5–6 (in Russian).

17. Pogodaev V. P., Kedrinskij I. A., Zemskov S. V., Gornostaev L. L., Danilkin V. I., Kucenok Yu. B. Comparative characteristics of elements with cathodes of fluorocarbon materials. Sb. tez. dokladov 2 Vsesoyuznoj konferencii po elektrohimicheskoj energetike [Abs. 2nd All-Union. conf. electrochem. power engineering]. Moscow, Moscow Power Engineering Institute Publ., 1984, pp. 34 (in Russian).

18. Reddy T. B., Sullivan J. R., Shakked A. Investigation of lithium-manganese dioxide elements. In : A. N. Dey, ed. Lithium Batteries. Pennington, The Electrochem. Soc., 1987, P.V. 84–1, pp. 334–344.

19. Chernozhuk T. V. Elektricheskaya provodimost’, sol’vataciya i mezhchastichnye vzaimodejstviya v rastvorah litievyh solej v γ-butirolaktone, propilenkarbonate i ego smesyah s 1,2-dimetoksietanom [Electrical conductivity, solvation and interparticle interactions in solutions of lithium salts in γ-butyrolactone, propylene carbonate and mixtures thereof with 1,2-dimethoxyethane]. Diss. Cand. Sci. (Chem.). Har’kov, 2015. 159 p. (in Russian).

20. Dudley J. T., Wilkinson D. P., Thomas G. Conductivity of electrolytes for rechargeable lithium batteries. J. Power Sources, 1991, vol. 35, pp. 59–82.

Full Text (PDF):
(downloads: 66)