ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Goffman V. G., Makarova A. D., Bakhytova E. R., Zavitaeva D. D., Gorokhovskii A. V., Morozova N. O., Tret'yachenko E. V., Vikulova M. A., Gorshkov N. V., Gonnova Y. A., Bainyashev A. M. Nonlinear impedance spectroscopy of composite materials based on potassium~polytitanate. Electrochemical Energetics, 2023, vol. 23, iss. 3, pp. 134-144. DOI: 10.18500/1608-4039-2023-23-3-134-144, EDN: DOITUB

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 50)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
546.56
EDN: 
DOITUB

Nonlinear impedance spectroscopy of composite materials based on potassium~polytitanate

Autors: 
Goffman Vladimir Georgievich, The Saratov State Technical University of Gagarin Yu. A.
Makarova Anna Dmitrievna, The Saratov State Technical University of Gagarin Yu. A.
Bakhytova El'dana Ruslanovna, The Saratov State Technical University of Gagarin Yu. A.
Zavitaeva Dar'ya Dmitrievna, The Saratov State Technical University of Gagarin Yu. A.
Gorokhovskii Aleksandr Vladilenovich, The Saratov State Technical University of Gagarin Yu. A.
Morozova Natal'ya Olegovna, The Saratov State Technical University of Gagarin Yu. A.
Tret'yachenko Elena Vasil'evna, The Saratov State Technical University of Gagarin Yu. A.
Vikulova Mariya Aleksandrovna, The Saratov State Technical University of Gagarin Yu. A.
Gorshkov Nikolai Vyacheslavovich, The Saratov State Technical University of Gagarin Yu. A.
Gonnova Yana Alekseevna, The Saratov State Technical University of Gagarin Yu. A.
Bainyashev Aleksei Mikhailovich, The Saratov State Technical University of Gagarin Yu. A.
Abstract: 

Experimental studies of the electrochemical and electrophysical properties of protonated potassium polytitanate and sodium-modified pryderite were carried out using the method of nonlinear impedance spectroscopy. The frequency dependencies of the resistance of the volume of grains and grain boundaries were determined depending on the magnitude of the polarization voltage (DC) and on the value of the perturbation signal (AC).

Reference: 
  1. Wilson J. R., Schwartz D. T., Adler S. B. Nonlinear electrochemical impedance spectroscopy for solid oxide fuel cell cathode materials. Electrochimica Acta, 2006, vol. 51, no. 8–9, pp. 1389–1402. https://doi.org/10.1016/j.electacta.2005.02.109
  2. Zabara M. A., Uzundal C. B., Ulgut B. Linear and nonlinear electrochemical impedance spectroscopy studies of Li/SOCl2 batteries. J. Electrochem. Soc., 2019, vol. 166, no. 6, article no. A811. https://doi.org/10.1149/2.1231904jes
  3. Fasmin F., Srinivasan R. Nonlinear electrochemical impedance spectroscopy. J. Electrochem. Soc., 2017, vol. 164, no. 7, article no. H443. https://doi.org/10.1149/2.0391707jes
  4. Barczyсski R. J., Murawski L. Nonlinear impedance in oxide glasses containing single and mixed alkali ions. Solid State Ionics, 2012, vol. 225, pp. 359–362, https://doi.org/10.1016/j.ssi.2012.03.049
  5. Wójcik N. A., Kupracz P., Barczyсski R. J. Nonlinear electrical properties of glass-ceramics nanocomposites containing ferroelectric nanocrystallites of Bi2VO5.5. Solid State Ionics, 2018, vol. 317, pp. 7–14.
  6. Abraham F., Debreuille-Gresse M. F., Mairesse G., Nowogrocki G. Phase transitions and ionic conductivity in Bi4V2O11 an oxide with a layered structure. Solid State Ionics, 1988, vol. 28, pp. 529–532.
  7. Abraham F., Boivin J. C., Mairesse G., Nowogrocki G. The BIMEVOX series: A new family of high performances oxide ion conductors. Solid State Ionics, 1990, vol. 40, pp. 934–937. https://doi.org/10.1016/S0167-2738(88)80096-1
  8. Varma K. B. R., Subbanna G. N., Guru T. N., Rao C. N. R. Synthesis and characterization of layered bismuth vanadates. Journal of Materials Research, 1990, vol. 5, no. 11, pp. 2718–2722. https://doi.org/10.1557/JMR.1990.2718
  9. Prasad K. V. R., Varma K. B. R. High-temperature X-ray structural, thermal and dielectric characteristics of ferroelectric Bi2VO5.5. Journal of Materials Science, 1995, vol. 30, pp. 6345–6349. https://doi.org/10.1007/BF00369686
  10. Makarova A. D., Goffman V. G., Gorokhovsky A. V., Tretyachenko E. V., Maksimova L. A., Gorshkov N. V., Vikulova M. A., Bainyashev A. M. Nonlinear effects in a cell with a solid electrolyte basedon protonated potassium polytitanate. Electrochemical Energetics, 2022, vol. 22, no. 1, pp. 35–42 (in Russian). https://doi.org/10.18500/1608-4039-2022-22-1-35-42
  11. Ewing F. J. The crystal structure of lepidocrocite. J. Chem. Phys., 1935, vol. 3, no. 7, pp. 420–424. https://doi.org/10.1063/1.1749692
  12. Sanchez-Monjaras T., Gorokhovsky A.V., Escalante-Garcia J. I. Molten salt synthesis and characterization of polytitanate ceramic precursors with varied TiO2/K2O molar ratio. J. Am. Ceram. Soc., 2008, vol. 91, no. 9, pp. 3058–3065.
  13. Gorokhovsky A. V., Tretyachenko E. V., Escalante-Garcia J. I., Yurkov G. Yu., Goffman V. G. Modified amorphous layered titanates as precursor materials to produce heterostructured nanopowders and ceramic nanocomposites. J. Alloy. Compd., 2014, vol. 586, pp. 494–S497.
  14. Goffman V. G., Makarova A. D., Maksimova L. A., Gorokhovsky A. V., Tretyachenko E. V., Gorshkov N. V., Vikulova M. A., Bainyashev A. M. Solid proton-conducting ceramic electrolyte for energy storage units. Electrochemical Energetics, 2021, vol. 21, no. 4, pp. 197–205 (in Russian). https://doi.org/10.18500/1608-4039-2021-21-4-197-205
Received: 
18.08.2023
Accepted: 
15.09.2023
Published: 
29.09.2023