For citation:
Kulova T. L., Skundin A. M. Nafion-based solid polymer electrolytes for lithium-ion and sodium-ion batteries. Electrochemical Energetics, 2024, vol. 24, iss. 3, pp. 117-132. DOI: 10.18500/1608-4039-2024-24-3-117-132, EDN: HKYAMJ
Nafion-based solid polymer electrolytes for lithium-ion and sodium-ion batteries
The use of solid polymer electrolytes is a novel and promising approach for enhancing the safety of lithium-ion and sodium-ion batteries. A number of publications on manufacturing electrolytes with lithium-ion and sodium-ion conductivity based on Nafion-like polymers have appeared in recent decade. The present mini-review analyses various methods of the synthesis of such electrolytes and their properties, as well as the information on laboratory lithium-ion and sodium-ion batteries using such electrolytes. The conclusion is made that the use of Nafion-based solid polymer electrolytes with Li+ and Na+ cation conductivity opens the way to creation of a new generation of lithium-ion and sodium-ion batteries. The principal advantage of Nafion-based solid polymer electrolytes over traditional PEO-based electrolytes is a fairly high cation transport number, which provides a sharp decrease in concentration polarization and, consequently, the increase in the energy efficiency of batteries.
- Hassoun J., Scrosati B. Review–Advances in Anode and Electrolyte Materials for the Progress of Lithium-Ion and beyond Lithium-Ion Batteries. J. Electrochem. Soc., 2015, vol. 162, pp. A2582–A2588. https://doi.org/10.1149/2.0191514jes
- Doyle M., Fuller T. F., Newman J. The importance of the lithium ion transference number in lithium/polymer cells. Electrochim. Acta, 1994, vol. 39, pp. 2073–2081. https://doi.org/10.1016/0013-4686(94) 85091-7
- Kwon H., Baek J., Kim H. Building lithium metal batteries under lean electrolyte conditions: Challenges and progress. Energy Storage Mater., 2023, vol. 55, pp. 708–726. https://doi.org/10.1016/j.ensm. 2022.12.016
- Woo S., Hwang E., Kang H., Lee H., Lee J., Kim H., Jeong G., Yoo D., Lee J., Kim S., Yu J., Choi J. W. High transference number enabled by sulfated zirconia superacid for lithium metal batteries with carbonate electrolytes. Energy Environ. Sci., 2021, vol. 14, pp. 1420–1428. https://doi.org/10.1039/d0ee03967e
- Quartarone E., Mustarelli P. Electrolytes for solid-state lithium rechargeable batteries: Recent advances and perspectives. Chem. Soc. Rev., 2011, vol. 40, pp. 2525–2540. https://doi.org/10.1039/c0cs00081g
- Zhang H., Li C., Piszcz M., Coya E., Rojo T., Rodriguez-Martinez L. M., Armand M., Zhou Z. Single lithium-ion conducting solid polymer electrolytes: Advances and perspectives. Chem. Soc. Rev., 2017, vol. 46, pp. 797–815. https://doi.org/10.1039/C6CS00491A
- Zhang Q., Liu K., Ding F., Liu X. Recent advances in solid polymer electrolytes for lithium batteries. Nano Res., 2017, vol. 10, pp. 4139–4174. https://doi.org/10.1007/s12274-017-1763-4
- Aziz S. B., Woo T. J., Kadir M. F. Z., Ahmed H. M. A conceptual review on polymer electrolytes and ion transport models. J. Sci. Adv. Mater. Devices, 2018, vol. 3, pp. 1–17. https://doi.org/10.1016/j.jsamd.2018.01.002
- Mauger A., Julien C. M., Paolella A., Armand M., Zaghib, K. Building Better Batteries in the Solid State: A Review. Materials, 2019, vol. 12, article no. 3892. https://doi.org/10.3390/ma12233892
- Deng K., Zeng Q., Wang D., Liu Z., Qiu Z., Zhang Y., Xiao M., Meng Y. Single-ion conducting gel polymer electrolytes: Design, preparation and application. J. Mater. Chem. A, 2020, vol. 8, pp. 1557–1577. https://doi.org/10.1039/C9TA11178F
- Voropaeva D. Yu., Novikova S. A., Yaroslavtsev A. B. Polymer electrolytes for metal-ion batteries. Russ. Chem. Rev., 2020, vol. 89, pp. 1132–1155. https://doi.org/10.1070/RCR4956
- Armand M. Polymer solid electrolytes – an overview. Solid State Ionics, 1983, vol. 9–10, pp. 745– 754. https://doi.org/10.1016/0167-2738(83)90083-8
- Hooper A., North J. M. The fabrication and performance of all solid state polymer-based rechargeable lithium cells. Solid State Ionics, 1983, vol. 9–10, pp. 1161–1166. https://doi.org/10.1016/0167-2738(83)90146-7
- Conolly D. J., Gresham W. F. US Fluorocarbon vinyl ether polymers, US Patent No. 3282875. November 01, 1966.
- Mauritz K. A., Moore R. B. State of Understanding of Nafion. Chem. Rev., 2004, vol. 104, pp. 4535–4585. https://doi.org/10.1021/cr0207123
- Xu T. Ion exchange membranes: State of their development and perspective. J. Membr. Sci., 2005, vol. 263, pp. 1–29. https://doi.org/10.1016/j.memsci.2005.05.002
- Zhang H., Shen P. K. Recent Development of Polymer Electrolyte Membranes for Fuel Cells. Chem. Rev., 2012, vol. 112, pp. 2780–2832. https://doi.org/10.1021/cr200035s
- Yaroslavtsev A. B. Perfluorinated ionexchange membranes. Polym. Sci. Ser. A, 2013, vol. 55, pp. 674–698. https://doi.org/10.1134/S0965545X13110060
- Zawodzinski T. A. Jr., Derouin C., Radzinski S., Sherman R. J., Smith V. T., Springer T. E., Gottesfeld S. Water Uptake by and Transport Through Nafion 117 Membranes. J. Electrochem. Soc., 1993, vol. 140, pp. 1041–1047. https://doi.org/10.1149/1.2056194
- Aldebert P., Guglielmi M., Pineri M. Ionic Conductivity of Bulk, Gels and Solutions of Perfluorinated Ionomer Membranes. Polym. J., 1991, vol. 23, pp. 399–406. https://doi.org/10.1295/polymj.23.399
- Liu Y., Cai Z., Tan L., Li L. Ion exchange membranes as electrolyte for high performance Li-ion batteries. Energy Environ. Sci., 2012, vol. 5, pp. 9007– 9013. https://doi.org/10.1039/C2EE22753C
- Liu Y., Tan L., Li L. Ion exchange membranes as electrolyte to improve high temperature capacity retention of LiMn2O4 cathode lithium-ion batteries. Chem. Commun., 2012, vol. 48, pp. 9858–9860. https://doi.org/10.1039/C2CC34529C
- Cai Z., Liu Y., Liu S., Li L., Zhang Y. High performance of lithium-ion polymer battery based on non-aqueous lithiated perfluorinated sulfonic ion-exchange membranes. Energy Environ. Sci., 2012, vol. 5, pp. 5690–5693. https://doi.org/10.1039/c1ee02708e
- Doyle M., Lewittes M. E., Roelofs M. G., Perusich S. A., Lowrey R. E. Relationship between ionic conductivity of perfluorinated ionomeric membranes and nonaqueous solvent properties. J. Membr. Sci., 2001, vol. 184, pp. 257–273. https://doi.org/10.1016/S0376-7388(00)00642-6
- Doyle M., Lewittes M. E., Roelofs M. G., Perusich S. A. Ionic Conductivity of Nonaqueous SolventSwollen Ionomer Membranes Based on Fluorosulfonate, Fluorocarboxylate, Sulfonate Fixed Ion Groups. J. Phys. Chem. B, 2001, vol. 105, pp. 9387–9394. https://doi.org/10.1021/jp0038308
- Sachan S., Ray C. A., Perusich S. A. Lithium Ion Transport Through Nonaqueous Perfluoroionomeric Membranes. Polim. Eng. Sci., 2002, vol. 42, pp. 1469– 1480. https://doi.org/10.1002/pen.11044
- Lu Y., Tikekar M., Mohanty R., Hendrickson K., Ma L., Archer L. A. Stable Cycling of Lithium Metal Batteries Using High Transference Number Electrolytes. Adv. Energy Mater., 2015, vol. 5, article no. 1402073. https://doi.org/10.1002/aenm.201402073
- Thomas K. E., Sloop S. E., Kerr J. B., Newman J. Comparison of lithium-polymer cell performance with unity and nonunity transference numbers. J. Power Sources, 2000, vol. 89, pp. 132–138. https://doi.org/10.1016/S0378-7753(00)00420-1
- Diederichsen K. M., McShane E. J., McCloskey B. D. Promising Routes to a High Li+ Transference Number Electrolyte for Lithium Ion Batteries. ACS Energy Lett., 2017, vol. 2, pp. 2563–2575. https://doi.org/10.1021/acsenergylett.7b00792
- Su L., Darling R. M., Gallagher K. G., Xie W., Thelen J. L., Badel A. F., Barton J. L., Cheng K. J., Balsara N. P., Moore J. S., Brushett F. R. An Investigation of the Ionic Conductivity and Species Crossover of Lithiated Nafion 117 in Nonaqueous Electrolytes. J. Electrochem. Soc., 2016, vol. 163, pp. A5253–A5262. https://doi.org/10.1149/2.03211601jes
- Sanginov E. A., Evshchik E. Yu., Kayumov R. R., Dobrovol’skii Yu. A. Lithium-Ion Conductivity of the Nafion Membrane Swollen in Organic Solvents. Russ. J. Electrochem., 2015, vol. 51, pp. 986–990. https://doi.org/10.1134/s1023193515100122
- Sanginov E. A., Kayumov R. R., Shmygleva L. V., Lesnichaya V. A., Karelin A. I., Dobrovolsky Y. A. Study of the transport of alkali metal ions in a nonaqueous polymer electrolyte based on Nafion. Solid State Ionics, 2017, vol. 300, pp. 26–31. https://doi.org/10.1016/j.ssi.2016.11.017
- Voropaeva D. Yu., Novikova S. A., Kulova T. L., Yaroslavtsev A. B. Conductivity of Nafion-117 membranes intercalated by polar aprotonic solvents. Ionics, 2018, vol. 24, pp. 1685–1692. https://doi.org/10.1007/s11581-017-2333-1
- Voropaeva D. Yu., Yaroslavtsev A. B. Polymer Electrolyte for Lithium Metal Batteries Based on Nafion and N,N-Dimethylacetamide. Membr. Membr. Technol., 2022, vol. 4, pp. 276–279. https://doi.org/10.1134/S2517751622040102
- Kayumov R. R., Shmygleva L. V., Evshchik E. Yu., Sanginov E. A., Popov N. A., Bushkova O. V., Dobrovolsky Yu. A. Conductivity of Lithium-Conducting Nafion Membranes Plasticized by Binary and Ternary Mixtures in the Sulfolan–Ethylene Carbonate–Diglyme System. Russ. J. Electrochem., 2021, vol. 57, pp. 911–920. https://doi.org/10.1134/S1023193521060045
- Istomina A. S., Yaroslavtseva T. V., Reznitskikh O. G., Kayumov R. R., Shmygleva L. V., Sanginov E. A., Dobrovolsky Y. A., Bushkova O. V. Li-Nafion Membrane Plasticised with Ethylene Carbonate/Sulfolane: Influence of Mixing Temperature on the Physicochemical Properties. Polymers, 2021, vol. 13, article no. 1150. https://doi.org/10.3390/polym13071150
- Sanginov E. A., Borisevich S. S., Kayumov R. R., Istomina A. S., Evshchik E. Yu., Reznitskikh O. G., Yaroslavtseva T. V., Melnikova T. I., Dobrovolsky Yu. A., Bushkova O. V. Lithiated Nafion plasticised by a mixture of ethylene carbonate and sulfolane. Electrochim. Acta, 2021, vol. 373, article no. 137914. https://doi.org/10.1016/j.electacta.2021.137914
- Karelin A. I., Kayumov R. R., Sanginov E. A., Dobrovolsky Yu.A. Structure of Lithium Ion-Conducting Polymer Membranes Based on Nafion Plasticized with Dimethylsulfoxide. Pet. Chem., 2016, vol. 56, pp. 1020–1026. https://doi.org/10.1134/S0965544116110074
- Liang H. Y., Qiu X. P., Zhang S. C., Zhu W. T., Chen L. Q. Study of lithiated Nafion ionomer for lithium batteries. J. Appl. Electrochem., 2004, vol. 34, pp. 1211–1214. https://doi.org/10.1007/s10800-004-1767-0
- Navarrini W., Scrosati B., Panero S., Ghielmi A., Sanguineti A., Geniram G. Lithiated short side chain perfluorinated sulfonic ionomeric membranes: Water content and conductivity. J. Power Sources, 2008, vol. 178, pp. 783–788. https://doi.org/10.1016/j.jpowsour.2007.09.110
- Kusoglu A., Weber A. Z. New Insights into Perfluorinated Sulfonic-Acid Ionomers. Chem. Rev., 2017, vol. 117, pp. 987–1104. https://doi.org/10.1021/acs.chemrev.6b00159
- Krupina A. A., Kayumov R. R., Nechaev G. V., Lapshin A. N., Shmygleva L. V. Polymer Electrolytes Based on Na-Nafion Plasticized by Binary Mixture of Ethylene Carbonate and Sulfolane. Membranes, 2022, vol. 12, article no. 840. https://doi.org/10.3390/membranes12090840
- Wang M., Zhao F., Dong S. A Single Ionic Conductor Based on Nafion and Its Electrochemical Properties Used As Lithium Polymer Electrolyte. J. Phys. Chem. B, 2004, vol. 108, pp. 1365–1370. https://doi.org/10.1021/jp036661a
- Li S., Huang J., Cui Y., Liu S., Chen Z., Huang W., Li C., Liu R., Fu R., Wu D. A robust all-organic protective layer towards ultrahigh-rate and large-capacity Li metal anodes. Nat. Nanotechnol., 2022, vol. 17, pp. 613–621. https://doi.org/10.1038/s41565-022-01107-2
- Nicotera I., Simari C., Agostini M., Enotiadis A., Brutti S. A Novel Li+ -Nafion-Sulfonated Graphene Oxide Membrane as Single Lithium-Ion Conducting Polymer Electrolyte for Lithium Batteries. J. Phys. Chem. C, 2019, vol. 123, pp. 27406–27416. https://doi.org/10.1021/acs.jpcc.9b08826
- Tu Z., Choudhury S., Zachman M. J., Wei S., Zhang K., Kourkoutis L. F., Archer L. A. Designing Artificial Solid-Electrolyte Interphases for Single-Ion and High-Efficiency Transport in Batteries. Joule, 2017, vol. 1, pp. 394–406. https://dx.doi.org/10.1016/j.joule.2017.06.002
- Cao C., Wang H., Liu W., Liao X., Li L. Nafion membranes as electrolyte and separator for sodium-ion battery. Int. J. Hydrogen Energy, 2014, vol. 39, pp. 16110–16115. https://doi.org/10.1016/j.ijhydene.2013.12.119
- Simari C., Tuccillo M., Brutti S., Nicotera I. Sodiated Nafion membranes for sodium metal aprotic batteries. Electrochim. Acta, 2022, vol. 410, article no. 139936. https://doi.org/10.1016/j.electacta.2022.139936
- Kulova T., Skundin A., Chekannikov A., Novikova S., Voropaeva D., Yaroslavtsev A. Sodium Rechargeable Batteries with Electrolytes Based on Nafion Membranes Intercalated by Mixtures of Organic Solvents. Batteries, 2018, vol. 4, article no. 61. https://doi.org/10.3390/batteries4040061
- Garsuch R.R, Le D.-B., Garsuch A., Li J., Wang S., Farooq A., Dahn J. R. Studies of LithiumExchanged Nafion as an Electrode Binder for Alloy Negatives in Lithium-Ion Batteries. J. Electrochem. Soc., 2008, vol. 155, pp. A721–A724. https://doi.org/10.1149/1.2956964
- Novikov D. V., Evschik E. Yu., Berestenko V. I., Yaroslavtseva T. V., Levchenko A. V., Kuznetsov M. V., Bukun N. G., Bushkova O. V., Dobrovolsky Yu.A. Electrochemical performance and surface chemistry of nanoparticle Si@SiO2 Li-ion battery anode in LiPF6-based electrolyte. Electrochim. Acta, 2016, vol. 208, pp. 109–119. https://dx.doi.org/10.1016/j.electacta.2016.04.179
- Yan T., Li F., Xu C., Fang H.-T. Highly uniform lithiated nafion thin coating on separator as an artificial SEI layer of lithium metal anode toward suppressed dendrite growth. Electrochim. Acta, 2022, vol. 410, article no. 140004. https://doi.org/10.1016/j.electacta.2022.140004
- Li S., Fan L., Lu Y. Rational design of robustflexible protective layer for safe lithium metal battery. Energy Storage Mater., 2018, vol. 18, pp. 205–212. https://doi.org/10.1016/j.ensm.2018.09.015
- Xu R., Xiao Y., Zhang R., Cheng X., Zhao C., Zhang X., Yan C., Zhang Q., Huang J. Dual-Phase Single-Ion Pathway Interfaces for Robust Lithium Metal in Working Batteries. Adv. Mater., 2019, vol. 31, article no. 1808392. https://doi.org/10.1002/adma.201808392
- Song J., Lee H., Choo M., Park J. and Kim H. Ionomer-Liquid Electrolyte Hybrid Ionic Conductor for High Cycling Stability of Lithium Metal Electrodes. Sci. Rep-UK, 2015, vol. 5, article no. 14458. https://doi.org/10.1038/srep14458
- Xiang J., Zhao Y., Yuan L., Chen C., Shen Y., Hu F., Hao Z., Liu J., Xu B., Huang Y. A strategy of selective and dendrite-free lithium deposition for lithium batteries. Nano Energy, 2017, vol. 42, pp. 262–268. https://dx.doi.org/10.1016/j.nanoen.2017.10.065
- Evshchik E. Yu., Sanginov E. A., Kayumov R. R., Zhuravlev V. D., Bushkova O. V., Dobrovolsky Yu.A. Li4Ti5O12/LiFePO4 Solid-State LithiumIon Full Cell with Lithiated Nafion membrane. Int. J. Electrochem. Sci., 2020, vol. 15, pp. 2216–2225, https://doi.org/10.20964/2020.03.06
- Voropaeva D. Yu., Novikova S. A., Kulova T. L., Yaroslavtsev A. B. Solvation and sodium conductivity of nonaqueous polymer electrolytes based on Nafion-117 membranes and polar aprotic solvents. Solid State Ionics, 2018, vol. 324, pp. 28–32. https://doi.org/10.1016/j.ssi.2018.06.002
- Jin Z., Xie K., Hong X., Hu Z., Liu X. Application of lithiated Nafion ionomer film as functional separator for lithium sulfur cells. J. Power Sources, 2012, vol. 218, pp. 163–167. https://dx.doi.org/10.1016/j.jpowsour.2012.06.100
- Bauer I., Thieme S., Brückner J., Althues H., Kaskel S. Reduced polysulfide shuttle in lithiumsulfur batteries using Nafion-based separators. J. Power Sources, 2014, vol. 251, pp. 417–422. https://dx.doi.org/10.1016/j.jpowsour.2013.11.090
- Huang J., Zhang Q., Peng H., Liu X., Qian W., Wei F. Ionic Shield for Polysulfides toward High-Stable Lithium Sulfur Battery. Energ. Environ. Sci., 2014, vol. 7, pp. 347–353. https://doi.org/10.1039/c3ee42223b
- Xu W.-T., Peng H.-J., Huang J.-Q., Zhao C.- Z., Cheng X.-B., Zhang Q. Towards Stable Lithium– Sulfur Batteries with a Low Self-Discharge Rate: Ion Diffusion Modulation and Anode Protection. ChemSusChem, 2015, vol. 8, pp. 2892–2901. https://doi.org/10.1002/cssc.201500428
- Huang B., Hua H., Lai P., Shen X., Li R., He Z., Zhang P., Zhao J. Constructing Ion-Selective Coating Layer with Lithium Ion Conductor LLZO and Binder Li-Nafion for Separator Used in LithiumSulfur Batteries. ChemElectroChem, 2022, vol. 9, article no. e202200416. https://doi.org/10.1002/celc.202200416
- Tang Q., Shan Z., Wang L., Qin X., Zhu K., Tian J., Liu X. Nafion coated sulfur-carbon electrode for high performance lithium-sulfur batteries. J. Power Sources, 2014, vol. 246, pp. 253–259. https://dx.doi.org/10.1016/j.jpowsour.2013.07.076
- Song J., Choo M.-J., Noh H., Park J.-K., Kim H.-T. Perfluorinated Ionomer-Enveloped Sulfur Cathodes for Lithium–Sulfur Batteries. ChemSusChem, 2014, vol. 7, pp. 3341–3346. https://dx.doi.org/10.1002/cssc.201402789
- Schneider H., Garsuch A., Panchenko A., Gronwald O., Janssen N., Novák P. Influence of different electrode compositions and binder materials on the performance of lithium–sulfur batteries. J. Power Sources, 2012, vol. 205, pp. 420–425. https://doi.org/10.1016/j.jpowsour.2011.12.061
- Cao Y., Li X., Aksay I. A., Lemmon J., Nie Z., Yang Z., Liu J. Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries. Phys. Chem. Chem. Phys., 2011, vol. 13, pp. 7660–7665. https://doi.org/10.1039/C0CP02477E
- Cai Y., Jin Q., Zhao K., Shen K., Wu L., Zhang X. Imbedding Li2CO3 in Li-nafion film to protect Li anode from unexpected dendrites growth. J. Alloys Compds., 2022, vol. 900, article no. 163444. https://doi.org/10.1016/j.jallcom.2021.163444
- Jin Q., Zhang X., Gao H., Li L., Zhang Z. Novel LixSiSy/Nafion as an Artificial SEI Film to Enable Dendrite-Free Li Metal Anodes and High Stability Li–S Batteries. J. Mater. Chem. A, 2020, vol. 8, pp. 8979–8988. https://doi.org/10.1039/D0TA02999H
- Tu Z., Choudhury S., Zachman M. J., Wei S., Zhang K., Kourkoutis L. F., Archer L. A. Designing Artificial Solid-Electrolyte Interphases for Single-Ion and High-Efficiency Transport in Batteries. Joule, 2017, vol. 1, pp. 1–13. https://dx.doi.org/10.1016/j.joule.2017.06.002
- Yu X., Joseph J., Manthiram A. Polymer Lithium-Sulfur Batteries with a Nafion Membrane and an Advanced Sulfur Electrode. J. Mater. Chem. A, 2015, vol. 3, pp. 15683–15691. https://doi.org/10.1039/C5TA04289E
- Gao J., Sun C., Xu L., Chen J., Wang C., Guo D., Chen H. Lithiated Nafion as polymer electrolyte for solid-state lithium sulfur batteries using carbon-sulfur composite cathode. J. Power Sources, 2018, vol. 382, pp. 179–189. https://doi.org/10.1016/j.jpowsour.2018.01.063
- Yaroslavtsev A. B., Novikova S. A., Voropaeva D. Y., Li S. A., Kulova T. L. Perfluorosulfonic Acid Membrane for Lithium–Sulfur Batteries with S/C Cathodes. Batteries, 2022, vol. 8, article no. 162. https://doi.org/10.3390/batteries8100162
- Dombaycıoğlu S., Günsel H., Aydın A. O. Nafion/Aquivion-Based Composite Lithium Ion Exchange Membranes for High Capacity Li-S Batteries. ChemistrySelect, 2022, vol. 7, article no. e202202910. https://doi.org/10.1002/slct.202202910
- Yu X., Joseph J., Manthiram A. Polymer Lithium-Sulfur Batteries with a Nafion Membrane and an Advanced Sulfur Electrode. J. Mater. Chem. A, 2015, vol. 3, pp. 15683–15691. https://doi.org/10.1039/c5ta04289e
- Luo J., Lee R., Jin J., Weng Y., Fang C., Wu N. Dual-Functional Polymer Coating on Lithium Anode for Suppressing Dendrite Growth and Polysulfide Shuttling in Li–S Batteries. Chem. Commun., 2017, vol. 53, pp. 963–966. https://doi.org/10.1039/c6cc09248a
- Huang J.-Q., Zhang Q., Wei F. Multifunctional separator/interlayer system for high-stable lithium-sulfur batteries: Progress and Prospects. Energy Storage Mater., 2015, vol. 1, pp. 127–145. https://doi.org/10.1016/j.ensm.2015.09.008
- Bauer I., Kohl M., Althues H., Kaskel S. Shuttle suppression in room temperature sodium–sulfur batteries using ion selective polymer membranes. Chem. Commun., 2014, vol. 50, pp. 3208–3210. https://doi.org/10.1039/C4CC00161C
- Yu X., Manthiram A. Ambient-Temperature Sodium–Sulfur Batteries with a Sodiated Nafion Membrane and a Carbon Nanofiber-Activated Carbon Composite Electrode. Adv. Energy Mater., 2015, vol. 5, article no. 1500350. https://doi.org/10.1002/aenm.201500350
- Yu X., Manthiram A. Performance Enhancement and Mechanistic Studies of Room-Temperature Sodium-Sulfur Batteries with a Carbon-Coated Functional Nafion Separator and a Na2S/Activated Carbon Nanofiber Cathode. Chem. Mater., 2016, vol. 28, pp. 896–905. https://doi.org/10.1021/acs.chemmater.5b04588
- Kraytsberg A., Ein-Eli Y. Review on Li– air batteries – Opportunities, limitations and perspective. J. Power Sources, 2011, vol. 196, pp. 886–893. https://doi.org/10.1016/j.jpowsour.2010.09.031
- Xiong Q., Huang G., Yu Y., Li C.-L., Li J.- C. Yan J.-M., Zhang X.-B. Soluble and Perfluorinated Polyelectrolyte for Safe and High-Performance Li-O2 Batteries. Angew. Chem. Int. Ed., 2022, vol. 61, article no. e202116635. https://doi.org/10.1002/anie.202116635
- Zhang Y., Xie S., Li D., Liu Y., Li C., Liu J., Xie H. Suppressing Redox Shuttling with Lithiated Nafion-Modified Separators for Li-O2 Batteries. ChemSusChem, 2022, vol. 15, article no. e202200769. https://doi.org/10.1002/cssc.202200769
- Liu J., Song F., He J., Hong Z., Li Q., Chen Y., Bai L., Zeng F., Cheng C., Chen Z. A novel Nafion-Functionalized Polyethersulfone(PES)- based ion-permselective separator for high performance Li-O2 batteries using LiI as a redox mediator. Int. J. Energy Res., 2022, vol. 46, pp. 19357–19367. https://doi.org/10.1002/er.8533
- Kwak W., Park J., Nguyen T. T., Kim H., Byon H. R., Jang M. and Sun Y. Dendrite- and OxygenProof Protective Layer for Lithium Metal in LithiumOxygen Batteries. J. Mater. Chem. A, 2019, vol. 7, pp. 3857–3862. https://doi.org/10.1039/C8TA11941D