ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Kulova T. L., Skundin A. M. Nafion-based solid polymer electrolytes for lithium-ion and sodium-ion batteries. Electrochemical Energetics, 2024, vol. 24, iss. 3, pp. 117-132. DOI: 10.18500/1608-4039-2024-24-3-117-132, EDN: HKYAMJ

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 58)
Language: 
Russian
Article type: 
Review
UDC: 
544.6:621.355
EDN: 
HKYAMJ

Nafion-based solid polymer electrolytes for lithium-ion and sodium-ion batteries

Autors: 
Kulova Tatiana L'vovna, A. N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS
Skundin Alexander Mordukhaevich, A. N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS
Abstract: 

The use of solid polymer electrolytes is a novel and promising approach for enhancing the safety of lithium-ion and sodium-ion batteries. A number of publications on manufacturing electrolytes with lithium-ion and sodium-ion conductivity based on Nafion-like polymers have appeared in recent decade. The present mini-review analyses various methods of the synthesis of such electrolytes and their properties, as well as the information on laboratory lithium-ion and sodium-ion batteries using such electrolytes. The conclusion is made that the use of Nafion-based solid polymer electrolytes with Li+ and Na+ cation conductivity opens the way to creation of a new generation of lithium-ion and sodium-ion batteries. The principal advantage of Nafion-based solid polymer electrolytes over traditional PEO-based electrolytes is a fairly high cation transport number, which provides a sharp decrease in concentration polarization and, consequently, the increase in the energy efficiency of batteries.

Reference: 
  1. Hassoun J., Scrosati B. Review–Advances in Anode and Electrolyte Materials for the Progress of Lithium-Ion and beyond Lithium-Ion Batteries. J. Electrochem. Soc., 2015, vol. 162, pp. A2582–A2588. https://doi.org/10.1149/2.0191514jes
  2. Doyle M., Fuller T. F., Newman J. The importance of the lithium ion transference number in lithium/polymer cells. Electrochim. Acta, 1994, vol. 39, pp. 2073–2081. https://doi.org/10.1016/0013-4686(94) 85091-7
  3. Kwon H., Baek J., Kim H. Building lithium metal batteries under lean electrolyte conditions: Challenges and progress. Energy Storage Mater., 2023, vol. 55, pp. 708–726. https://doi.org/10.1016/j.ensm. 2022.12.016
  4. Woo S., Hwang E., Kang H., Lee H., Lee J., Kim H., Jeong G., Yoo D., Lee J., Kim S., Yu J., Choi J. W. High transference number enabled by sulfated zirconia superacid for lithium metal batteries with carbonate electrolytes. Energy Environ. Sci., 2021, vol. 14, pp. 1420–1428. https://doi.org/10.1039/d0ee03967e
  5. Quartarone E., Mustarelli P. Electrolytes for solid-state lithium rechargeable batteries: Recent advances and perspectives. Chem. Soc. Rev., 2011, vol. 40, pp. 2525–2540. https://doi.org/10.1039/c0cs00081g
  6. Zhang H., Li C., Piszcz M., Coya E., Rojo T., Rodriguez-Martinez L. M., Armand M., Zhou Z. Single lithium-ion conducting solid polymer electrolytes: Advances and perspectives. Chem. Soc. Rev., 2017, vol. 46, pp. 797–815. https://doi.org/10.1039/C6CS00491A
  7. Zhang Q., Liu K., Ding F., Liu X. Recent advances in solid polymer electrolytes for lithium batteries. Nano Res., 2017, vol. 10, pp. 4139–4174. https://doi.org/10.1007/s12274-017-1763-4
  8. Aziz S. B., Woo T. J., Kadir M. F. Z., Ahmed H. M. A conceptual review on polymer electrolytes and ion transport models. J. Sci. Adv. Mater. Devices, 2018, vol. 3, pp. 1–17. https://doi.org/10.1016/j.jsamd.2018.01.002
  9. Mauger A., Julien C. M., Paolella A., Armand M., Zaghib, K. Building Better Batteries in the Solid State: A Review. Materials, 2019, vol. 12, article no. 3892. https://doi.org/10.3390/ma12233892
  10. Deng K., Zeng Q., Wang D., Liu Z., Qiu Z., Zhang Y., Xiao M., Meng Y. Single-ion conducting gel polymer electrolytes: Design, preparation and application. J. Mater. Chem. A, 2020, vol. 8, pp. 1557–1577. https://doi.org/10.1039/C9TA11178F
  11. Voropaeva D. Yu., Novikova S. A., Yaroslavtsev A. B. Polymer electrolytes for metal-ion batteries. Russ. Chem. Rev., 2020, vol. 89, pp. 1132–1155. https://doi.org/10.1070/RCR4956
  12. Armand M. Polymer solid electrolytes – an overview. Solid State Ionics, 1983, vol. 9–10, pp. 745– 754. https://doi.org/10.1016/0167-2738(83)90083-8
  13. Hooper A., North J. M. The fabrication and performance of all solid state polymer-based rechargeable lithium cells. Solid State Ionics, 1983, vol. 9–10, pp. 1161–1166. https://doi.org/10.1016/0167-2738(83)90146-7
  14.  Conolly D. J., Gresham W. F. US Fluorocarbon vinyl ether polymers, US Patent No. 3282875. November 01, 1966.
  15. Mauritz K. A., Moore R. B. State of Understanding of Nafion. Chem. Rev., 2004, vol. 104, pp. 4535–4585. https://doi.org/10.1021/cr0207123
  16. Xu T. Ion exchange membranes: State of their development and perspective. J. Membr. Sci., 2005, vol. 263, pp. 1–29. https://doi.org/10.1016/j.memsci.2005.05.002
  17. Zhang H., Shen P. K. Recent Development of Polymer Electrolyte Membranes for Fuel Cells. Chem. Rev., 2012, vol. 112, pp. 2780–2832. https://doi.org/10.1021/cr200035s
  18. Yaroslavtsev A. B. Perfluorinated ionexchange membranes. Polym. Sci. Ser. A, 2013, vol. 55, pp. 674–698. https://doi.org/10.1134/S0965545X13110060
  19. Zawodzinski T. A. Jr., Derouin C., Radzinski S., Sherman R. J., Smith V. T., Springer T. E., Gottesfeld S. Water Uptake by and Transport Through Nafion 117 Membranes. J. Electrochem. Soc., 1993, vol. 140, pp. 1041–1047. https://doi.org/10.1149/1.2056194
  20. Aldebert P., Guglielmi M., Pineri M. Ionic Conductivity of Bulk, Gels and Solutions of Perfluorinated Ionomer Membranes. Polym. J., 1991, vol. 23, pp. 399–406. https://doi.org/10.1295/polymj.23.399
  21. Liu Y., Cai Z., Tan L., Li L. Ion exchange membranes as electrolyte for high performance Li-ion batteries. Energy Environ. Sci., 2012, vol. 5, pp. 9007– 9013. https://doi.org/10.1039/C2EE22753C
  22. Liu Y., Tan L., Li L. Ion exchange membranes as electrolyte to improve high temperature capacity retention of LiMn2O4 cathode lithium-ion batteries. Chem. Commun., 2012, vol. 48, pp. 9858–9860. https://doi.org/10.1039/C2CC34529C
  23. Cai Z., Liu Y., Liu S., Li L., Zhang Y. High performance of lithium-ion polymer battery based on non-aqueous lithiated perfluorinated sulfonic ion-exchange membranes. Energy Environ. Sci., 2012, vol. 5, pp. 5690–5693. https://doi.org/10.1039/c1ee02708e
  24. Doyle M., Lewittes M. E., Roelofs M. G., Perusich S. A., Lowrey R. E. Relationship between ionic conductivity of perfluorinated ionomeric membranes and nonaqueous solvent properties. J. Membr. Sci., 2001, vol. 184, pp. 257–273. https://doi.org/10.1016/S0376-7388(00)00642-6
  25. Doyle M., Lewittes M. E., Roelofs M. G., Perusich S. A. Ionic Conductivity of Nonaqueous SolventSwollen Ionomer Membranes Based on Fluorosulfonate, Fluorocarboxylate, Sulfonate Fixed Ion Groups. J. Phys. Chem. B, 2001, vol. 105, pp. 9387–9394. https://doi.org/10.1021/jp0038308
  26. Sachan S., Ray C. A., Perusich S. A. Lithium Ion Transport Through Nonaqueous Perfluoroionomeric Membranes. Polim. Eng. Sci., 2002, vol. 42, pp. 1469– 1480. https://doi.org/10.1002/pen.11044
  27. Lu Y., Tikekar M., Mohanty R., Hendrickson K., Ma L., Archer L. A. Stable Cycling of Lithium Metal Batteries Using High Transference Number Electrolytes. Adv. Energy Mater., 2015, vol. 5, article no. 1402073. https://doi.org/10.1002/aenm.201402073
  28. Thomas K. E., Sloop S. E., Kerr J. B., Newman J. Comparison of lithium-polymer cell performance with unity and nonunity transference numbers. J. Power Sources, 2000, vol. 89, pp. 132–138. https://doi.org/10.1016/S0378-7753(00)00420-1
  29. Diederichsen K. M., McShane E. J., McCloskey B. D. Promising Routes to a High Li+ Transference Number Electrolyte for Lithium Ion Batteries. ACS Energy Lett., 2017, vol. 2, pp. 2563–2575. https://doi.org/10.1021/acsenergylett.7b00792
  30. Su L., Darling R. M., Gallagher K. G., Xie W., Thelen J. L., Badel A. F., Barton J. L., Cheng K. J., Balsara N. P., Moore J. S., Brushett F. R. An Investigation of the Ionic Conductivity and Species Crossover of Lithiated Nafion 117 in Nonaqueous Electrolytes. J. Electrochem. Soc., 2016, vol. 163, pp. A5253–A5262. https://doi.org/10.1149/2.03211601jes
  31. Sanginov E. A., Evshchik E. Yu., Kayumov R. R., Dobrovol’skii Yu. A. Lithium-Ion Conductivity of the Nafion Membrane Swollen in Organic Solvents. Russ. J. Electrochem., 2015, vol. 51, pp. 986–990. https://doi.org/10.1134/s1023193515100122
  32. Sanginov E. A., Kayumov R. R., Shmygleva L. V., Lesnichaya V. A., Karelin A. I., Dobrovolsky Y. A. Study of the transport of alkali metal ions in a nonaqueous polymer electrolyte based on Nafion. Solid State Ionics, 2017, vol. 300, pp. 26–31. https://doi.org/10.1016/j.ssi.2016.11.017
  33. Voropaeva D. Yu., Novikova S. A., Kulova T. L., Yaroslavtsev A. B. Conductivity of Nafion-117 membranes intercalated by polar aprotonic solvents. Ionics, 2018, vol. 24, pp. 1685–1692. https://doi.org/10.1007/s11581-017-2333-1
  34. Voropaeva D. Yu., Yaroslavtsev A. B. Polymer Electrolyte for Lithium Metal Batteries Based on Nafion and N,N-Dimethylacetamide. Membr. Membr. Technol., 2022, vol. 4, pp. 276–279. https://doi.org/10.1134/S2517751622040102
  35. Kayumov R. R., Shmygleva L. V., Evshchik E. Yu., Sanginov E. A., Popov N. A., Bushkova O. V., Dobrovolsky Yu. A. Conductivity of Lithium-Conducting Nafion Membranes Plasticized by Binary and Ternary Mixtures in the Sulfolan–Ethylene Carbonate–Diglyme System. Russ. J. Electrochem., 2021, vol. 57, pp. 911–920. https://doi.org/10.1134/S1023193521060045
  36. Istomina A. S., Yaroslavtseva T. V., Reznitskikh O. G., Kayumov R. R., Shmygleva L. V., Sanginov E. A., Dobrovolsky Y. A., Bushkova O. V. Li-Nafion Membrane Plasticised with Ethylene Carbonate/Sulfolane: Influence of Mixing Temperature on the Physicochemical Properties. Polymers, 2021, vol. 13, article no. 1150. https://doi.org/10.3390/polym13071150
  37. Sanginov E. A., Borisevich S. S., Kayumov R. R., Istomina A. S., Evshchik E. Yu., Reznitskikh O. G., Yaroslavtseva T. V., Melnikova T. I., Dobrovolsky Yu. A., Bushkova O. V. Lithiated Nafion plasticised by a mixture of ethylene carbonate and sulfolane. Electrochim. Acta, 2021, vol. 373, article no. 137914. https://doi.org/10.1016/j.electacta.2021.137914
  38. Karelin A. I., Kayumov R. R., Sanginov E. A., Dobrovolsky Yu.A. Structure of Lithium Ion-Conducting Polymer Membranes Based on Nafion Plasticized with Dimethylsulfoxide. Pet. Chem., 2016, vol. 56, pp. 1020–1026. https://doi.org/10.1134/S0965544116110074
  39. Liang H. Y., Qiu X. P., Zhang S. C., Zhu W. T., Chen L. Q. Study of lithiated Nafion ionomer for lithium batteries. J. Appl. Electrochem., 2004, vol. 34, pp. 1211–1214. https://doi.org/10.1007/s10800-004-1767-0
  40. Navarrini W., Scrosati B., Panero S., Ghielmi A., Sanguineti A., Geniram G. Lithiated short side chain perfluorinated sulfonic ionomeric membranes: Water content and conductivity. J. Power Sources, 2008, vol. 178, pp. 783–788. https://doi.org/10.1016/j.jpowsour.2007.09.110
  41. Kusoglu A., Weber A. Z. New Insights into Perfluorinated Sulfonic-Acid Ionomers. Chem. Rev., 2017, vol. 117, pp. 987–1104. https://doi.org/10.1021/acs.chemrev.6b00159
  42. Krupina A. A., Kayumov R. R., Nechaev G. V., Lapshin A. N., Shmygleva L. V. Polymer Electrolytes Based on Na-Nafion Plasticized by Binary Mixture of Ethylene Carbonate and Sulfolane. Membranes, 2022, vol. 12, article no. 840. https://doi.org/10.3390/membranes12090840
  43. Wang M., Zhao F., Dong S. A Single Ionic Conductor Based on Nafion and Its Electrochemical Properties Used As Lithium Polymer Electrolyte. J. Phys. Chem. B, 2004, vol. 108, pp. 1365–1370. https://doi.org/10.1021/jp036661a
  44. Li S., Huang J., Cui Y., Liu S., Chen Z., Huang W., Li C., Liu R., Fu R., Wu D. A robust all-organic protective layer towards ultrahigh-rate and large-capacity Li metal anodes. Nat. Nanotechnol., 2022, vol. 17, pp. 613–621. https://doi.org/10.1038/s41565-022-01107-2
  45. Nicotera I., Simari C., Agostini M., Enotiadis A., Brutti S. A Novel Li+ -Nafion-Sulfonated Graphene Oxide Membrane as Single Lithium-Ion Conducting Polymer Electrolyte for Lithium Batteries. J. Phys. Chem. C, 2019, vol. 123, pp. 27406–27416. https://doi.org/10.1021/acs.jpcc.9b08826
  46. Tu Z., Choudhury S., Zachman M. J., Wei S., Zhang K., Kourkoutis L. F., Archer L. A. Designing Artificial Solid-Electrolyte Interphases for Single-Ion and High-Efficiency Transport in Batteries. Joule, 2017, vol. 1, pp. 394–406. https://dx.doi.org/10.1016/j.joule.2017.06.002
  47. Cao C., Wang H., Liu W., Liao X., Li L. Nafion membranes as electrolyte and separator for sodium-ion battery. Int. J. Hydrogen Energy, 2014, vol. 39, pp. 16110–16115. https://doi.org/10.1016/j.ijhydene.2013.12.119
  48. Simari C., Tuccillo M., Brutti S., Nicotera I. Sodiated Nafion membranes for sodium metal aprotic batteries. Electrochim. Acta, 2022, vol. 410, article no. 139936. https://doi.org/10.1016/j.electacta.2022.139936
  49. Kulova T., Skundin A., Chekannikov A., Novikova S., Voropaeva D., Yaroslavtsev A. Sodium Rechargeable Batteries with Electrolytes Based on Nafion Membranes Intercalated by Mixtures of Organic Solvents. Batteries, 2018, vol. 4, article no. 61. https://doi.org/10.3390/batteries4040061
  50. Garsuch R.R, Le D.-B., Garsuch A., Li J., Wang S., Farooq A., Dahn J. R. Studies of LithiumExchanged Nafion as an Electrode Binder for Alloy Negatives in Lithium-Ion Batteries. J. Electrochem. Soc., 2008, vol. 155, pp. A721–A724. https://doi.org/10.1149/1.2956964
  51. Novikov D. V., Evschik E. Yu., Berestenko V. I., Yaroslavtseva T. V., Levchenko A. V., Kuznetsov M. V., Bukun N. G., Bushkova O. V., Dobrovolsky Yu.A. Electrochemical performance and surface chemistry of nanoparticle Si@SiO2 Li-ion battery anode in LiPF6-based electrolyte. Electrochim. Acta, 2016, vol. 208, pp. 109–119. https://dx.doi.org/10.1016/j.electacta.2016.04.179
  52. Yan T., Li F., Xu C., Fang H.-T. Highly uniform lithiated nafion thin coating on separator as an artificial SEI layer of lithium metal anode toward suppressed dendrite growth. Electrochim. Acta, 2022, vol. 410, article no. 140004. https://doi.org/10.1016/j.electacta.2022.140004
  53. Li S., Fan L., Lu Y. Rational design of robustflexible protective layer for safe lithium metal battery. Energy Storage Mater., 2018, vol. 18, pp. 205–212. https://doi.org/10.1016/j.ensm.2018.09.015
  54. Xu R., Xiao Y., Zhang R., Cheng X., Zhao C., Zhang X., Yan C., Zhang Q., Huang J. Dual-Phase Single-Ion Pathway Interfaces for Robust Lithium Metal in Working Batteries. Adv. Mater., 2019, vol. 31, article no. 1808392. https://doi.org/10.1002/adma.201808392
  55. Song J., Lee H., Choo M., Park J. and Kim H. Ionomer-Liquid Electrolyte Hybrid Ionic Conductor for High Cycling Stability of Lithium Metal Electrodes. Sci. Rep-UK, 2015, vol. 5, article no. 14458. https://doi.org/10.1038/srep14458
  56. Xiang J., Zhao Y., Yuan L., Chen C., Shen Y., Hu F., Hao Z., Liu J., Xu B., Huang Y. A strategy of selective and dendrite-free lithium deposition for lithium batteries. Nano Energy, 2017, vol. 42, pp. 262–268. https://dx.doi.org/10.1016/j.nanoen.2017.10.065
  57. Evshchik E. Yu., Sanginov E. A., Kayumov R. R., Zhuravlev V. D., Bushkova O. V., Dobrovolsky Yu.A. Li4Ti5O12/LiFePO4 Solid-State LithiumIon Full Cell with Lithiated Nafion membrane. Int. J. Electrochem. Sci., 2020, vol. 15, pp. 2216–2225, https://doi.org/10.20964/2020.03.06
  58. Voropaeva D. Yu., Novikova S. A., Kulova T. L., Yaroslavtsev A. B. Solvation and sodium conductivity of nonaqueous polymer electrolytes based on Nafion-117 membranes and polar aprotic solvents. Solid State Ionics, 2018, vol. 324, pp. 28–32. https://doi.org/10.1016/j.ssi.2018.06.002
  59. Jin Z., Xie K., Hong X., Hu Z., Liu X. Application of lithiated Nafion ionomer film as functional separator for lithium sulfur cells. J. Power Sources, 2012, vol. 218, pp. 163–167. https://dx.doi.org/10.1016/j.jpowsour.2012.06.100
  60. Bauer I., Thieme S., Brückner J., Althues H., Kaskel S. Reduced polysulfide shuttle in lithiumsulfur batteries using Nafion-based separators. J. Power Sources, 2014, vol. 251, pp. 417–422. https://dx.doi.org/10.1016/j.jpowsour.2013.11.090
  61. Huang J., Zhang Q., Peng H., Liu X., Qian W., Wei F. Ionic Shield for Polysulfides toward High-Stable Lithium Sulfur Battery. Energ. Environ. Sci., 2014, vol. 7, pp. 347–353. https://doi.org/10.1039/c3ee42223b
  62. Xu W.-T., Peng H.-J., Huang J.-Q., Zhao C.- Z., Cheng X.-B., Zhang Q. Towards Stable Lithium– Sulfur Batteries with a Low Self-Discharge Rate: Ion Diffusion Modulation and Anode Protection. ChemSusChem, 2015, vol. 8, pp. 2892–2901. https://doi.org/10.1002/cssc.201500428
  63. Huang B., Hua H., Lai P., Shen X., Li R., He Z., Zhang P., Zhao J. Constructing Ion-Selective Coating Layer with Lithium Ion Conductor LLZO and Binder Li-Nafion for Separator Used in LithiumSulfur Batteries. ChemElectroChem, 2022, vol. 9, article no. e202200416. https://doi.org/10.1002/celc.202200416
  64. Tang Q., Shan Z., Wang L., Qin X., Zhu K., Tian J., Liu X. Nafion coated sulfur-carbon electrode for high performance lithium-sulfur batteries. J. Power Sources, 2014, vol. 246, pp. 253–259. https://dx.doi.org/10.1016/j.jpowsour.2013.07.076
  65. Song J., Choo M.-J., Noh H., Park J.-K., Kim H.-T. Perfluorinated Ionomer-Enveloped Sulfur Cathodes for Lithium–Sulfur Batteries. ChemSusChem, 2014, vol. 7, pp. 3341–3346. https://dx.doi.org/10.1002/cssc.201402789
  66. Schneider H., Garsuch A., Panchenko A., Gronwald O., Janssen N., Novák P. Influence of different electrode compositions and binder materials on the performance of lithium–sulfur batteries. J. Power Sources, 2012, vol. 205, pp. 420–425. https://doi.org/10.1016/j.jpowsour.2011.12.061
  67. Cao Y., Li X., Aksay I. A., Lemmon J., Nie Z., Yang Z., Liu J. Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries. Phys. Chem. Chem. Phys., 2011, vol. 13, pp. 7660–7665. https://doi.org/10.1039/C0CP02477E
  68. Cai Y., Jin Q., Zhao K., Shen K., Wu L., Zhang X. Imbedding Li2CO3 in Li-nafion film to protect Li anode from unexpected dendrites growth. J. Alloys Compds., 2022, vol. 900, article no. 163444. https://doi.org/10.1016/j.jallcom.2021.163444
  69. Jin Q., Zhang X., Gao H., Li L., Zhang Z. Novel LixSiSy/Nafion as an Artificial SEI Film to Enable Dendrite-Free Li Metal Anodes and High Stability Li–S Batteries. J. Mater. Chem. A, 2020, vol. 8, pp. 8979–8988. https://doi.org/10.1039/D0TA02999H
  70. Tu Z., Choudhury S., Zachman M. J., Wei S., Zhang K., Kourkoutis L. F., Archer L. A. Designing Artificial Solid-Electrolyte Interphases for Single-Ion and High-Efficiency Transport in Batteries. Joule, 2017, vol. 1, pp. 1–13. https://dx.doi.org/10.1016/j.joule.2017.06.002
  71. Yu X., Joseph J., Manthiram A. Polymer Lithium-Sulfur Batteries with a Nafion Membrane and an Advanced Sulfur Electrode. J. Mater. Chem. A, 2015, vol. 3, pp. 15683–15691. https://doi.org/10.1039/C5TA04289E
  72. Gao J., Sun C., Xu L., Chen J., Wang C., Guo D., Chen H. Lithiated Nafion as polymer electrolyte for solid-state lithium sulfur batteries using carbon-sulfur composite cathode. J. Power Sources, 2018, vol. 382, pp. 179–189. https://doi.org/10.1016/j.jpowsour.2018.01.063
  73. Yaroslavtsev A. B., Novikova S. A., Voropaeva D. Y., Li S. A., Kulova T. L. Perfluorosulfonic Acid Membrane for Lithium–Sulfur Batteries with S/C Cathodes. Batteries, 2022, vol. 8, article no. 162. https://doi.org/10.3390/batteries8100162
  74. Dombaycıoğlu S., Günsel H., Aydın A. O. Nafion/Aquivion-Based Composite Lithium Ion Exchange Membranes for High Capacity Li-S Batteries. ChemistrySelect, 2022, vol. 7, article no. e202202910. https://doi.org/10.1002/slct.202202910
  75. Yu X., Joseph J., Manthiram A. Polymer Lithium-Sulfur Batteries with a Nafion Membrane and an Advanced Sulfur Electrode. J. Mater. Chem. A, 2015, vol. 3, pp. 15683–15691. https://doi.org/10.1039/c5ta04289e
  76. Luo J., Lee R., Jin J., Weng Y., Fang C., Wu N. Dual-Functional Polymer Coating on Lithium Anode for Suppressing Dendrite Growth and Polysulfide Shuttling in Li–S Batteries. Chem. Commun., 2017, vol. 53, pp. 963–966. https://doi.org/10.1039/c6cc09248a
  77. Huang J.-Q., Zhang Q., Wei F. Multifunctional separator/interlayer system for high-stable lithium-sulfur batteries: Progress and Prospects. Energy Storage Mater., 2015, vol. 1, pp. 127–145. https://doi.org/10.1016/j.ensm.2015.09.008
  78. Bauer I., Kohl M., Althues H., Kaskel S. Shuttle suppression in room temperature sodium–sulfur batteries using ion selective polymer membranes. Chem. Commun., 2014, vol. 50, pp. 3208–3210. https://doi.org/10.1039/C4CC00161C
  79. Yu X., Manthiram A. Ambient-Temperature Sodium–Sulfur Batteries with a Sodiated Nafion Membrane and a Carbon Nanofiber-Activated Carbon Composite Electrode. Adv. Energy Mater., 2015, vol. 5, article no. 1500350. https://doi.org/10.1002/aenm.201500350
  80. Yu X., Manthiram A. Performance Enhancement and Mechanistic Studies of Room-Temperature Sodium-Sulfur Batteries with a Carbon-Coated Functional Nafion Separator and a Na2S/Activated Carbon Nanofiber Cathode. Chem. Mater., 2016, vol. 28, pp. 896–905. https://doi.org/10.1021/acs.chemmater.5b04588
  81. Kraytsberg A., Ein-Eli Y. Review on Li– air batteries – Opportunities, limitations and perspective. J. Power Sources, 2011, vol. 196, pp. 886–893. https://doi.org/10.1016/j.jpowsour.2010.09.031
  82. Xiong Q., Huang G., Yu Y., Li C.-L., Li J.- C. Yan J.-M., Zhang X.-B. Soluble and Perfluorinated Polyelectrolyte for Safe and High-Performance Li-O2 Batteries. Angew. Chem. Int. Ed., 2022, vol. 61, article no. e202116635. https://doi.org/10.1002/anie.202116635
  83. Zhang Y., Xie S., Li D., Liu Y., Li C., Liu J., Xie H. Suppressing Redox Shuttling with Lithiated Nafion-Modified Separators for Li-O2 Batteries. ChemSusChem, 2022, vol. 15, article no. e202200769. https://doi.org/10.1002/cssc.202200769
  84. Liu J., Song F., He J., Hong Z., Li Q., Chen Y., Bai L., Zeng F., Cheng C., Chen Z. A novel Nafion-Functionalized Polyethersulfone(PES)- based ion-permselective separator for high performance Li-O2 batteries using LiI as a redox mediator. Int. J. Energy Res., 2022, vol. 46, pp. 19357–19367. https://doi.org/10.1002/er.8533
  85. Kwak W., Park J., Nguyen T. T., Kim H., Byon H. R., Jang M. and Sun Y. Dendrite- and OxygenProof Protective Layer for Lithium Metal in LithiumOxygen Batteries. J. Mater. Chem. A, 2019, vol. 7, pp. 3857–3862. https://doi.org/10.1039/C8TA11941D
Received: 
17.04.2024
Accepted: 
30.05.2024
Published: 
30.09.2024