ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Sapisheva A. A., Burashnikova M. M., Shalaeva V. S., Toporishcheva D. A., Kazarinov I. A. Influence porous structure of the polymer membrane based on fluoropolymer F-42 on the process of oxygen ionization in the mock-up of lead-acid batteries. Electrochemical Energetics, 2016, vol. 16, iss. 1, pp. 17-23. DOI: 10.18500/1608-4039-2016-16-1-17-23, EDN: YPTGJL

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 91)
Language: 
Russian
Heading: 
Article type: 
Article
EDN: 
YPTGJL

Influence porous structure of the polymer membrane based on fluoropolymer F-42 on the process of oxygen ionization in the mock-up of lead-acid batteries

Autors: 
Sapisheva Aniya Aydarovn, Saratov State University
Burashnikova Marina Mikhailovna, Saratov State University
Shalaeva Viktoriya Sergeevna, Saratov State University
Toporishcheva Dar'ya Aleksandrovna, Saratov State University
Kazarinov Ivan Alekseevich, Saratov State University
Abstract: 

УДК 541.135

DOI:  https://doi.org/10.18500/1608-4039-2016-16-1-17-23

Polymer membrane based on fluoropolymer F-42 was obtained by the method of electrospinning. The effect of the concentration of spinning solution and technological factors electrospinning process to its porous structure. It has been shown that increasing the spinning solution viscosity leads to an increase in pore size of the membrane obtained. Studied oxygen ionization process in the layout of the lead-acid battery separator with a two-layer based on glass fiber and polymer matrix membranes based on PTFE F-42.

Reference: 

1. Valve-regulated Lead-Acid Batteries. Eds. D. A. J. Rand, P. T. Moseley, J. Garche, C. D. Parker, ELSEVIER, 2004.
2. Oldham France, Amer-Sil, Hollingsworth & Vose, University of Kassel, BE97–408S Task 1(a), 3 Months Periodic Progress Report, 10 August 1988,  Advanced Lead-Acid Battery Consortium, Research Triangle Park, NC, USA, 1998
3. Oldham France, Amer-Sil, Hollingsworth & Vose, University of Kassel, BE97–4085 Task 1(a), Periodic Progress Report Six Months, 22 August 2000,  Advanced Lead-Acid Battery Consortium, Research Triangle Park, NC, USA, 2000
4. Valve-regulated lead-acid cells and batteries and separators used in such cells and batteries. Intern. Patent Application (PCT) WO 99, 01902 / Pavlov D., Ruevski S. I., Naidenov V. B.. Mircheva V. V., Petkova G. A., Dimitrov M. K., Rogachev T. V., Cherneva-Vasileva M. H. 1997.
5. Pavlov D.,. Naidenov V, Raevski S., Mircheva V., Cherneva M. New modified AGM separator and its influence on the performance of VRAL batteries. J. Power Sources. 2003, vol. 113, pp. 209–227.
6. Naidenov V., Pavlov D., Cherneva M. Three-layered absorptive glass mat separator with membrane for application in valve-regulated lead-acid batteries. J. Power Sources. 2009, vol. 192, pp. 730–735.
7. Gas recombinant battery separator. Pat. 5928811 USA, H01M2\slash 16. Publ. M. Khavari. 27.07.99.
8. Burashnikova M.M., Denisova T.S., Zakharevich A.M., Kazarinov I. A. Structural Characteristics of Absorbent Glass Mat Separators and their Influence on Oxygen Ionization Rate in Models of Lead-Acid Accumulators. [Strukturnye harakteristiki absorbtivno-stekljannyh separatorov i ih vlijanie na jeffektivnost' ionizacii kisloroda v maketah svincovo-kislotnyh akkumuljatorov]. Elektrokhimicheskaya Energetika [Electrochemical energetics], 2002, vol. 2, pp. 27–34 (In Russian).
9. Homskaja E. A., Kazarinov I. A., Semykin A. V., Gorbacheva N. F. [Makrokinetika gazovyh ciklov v germetichnyh akkumuljatorah]. Saratov, Izd-vo Sarat. un-ta, 2008 (in Russian).
10. Burashnikova M.M., Kazarinov I.A., Khramkova T. S., Shmakov S. L. Pressure influence on the structural characteristics of modified AGM separators: A standard contact porosimetry study. J. Power Sources, 2015, vol. 291, pр. 1–13.

Received: 
28.12.2015
Accepted: 
28.12.2015
Published: 
25.02.2016